Your browser doesn't support javascript.
loading
Transport and Interfacial Injection of d-Band Hot Holes Control Plasmonic Chemistry.
Kiani, Fatemeh; Bowman, Alan R; Sabzehparvar, Milad; Karaman, Can O; Sundararaman, Ravishankar; Tagliabue, Giulia.
Afiliación
  • Kiani F; Laboratory of Nanoscience for Energy Technologies (LNET), STI, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
  • Bowman AR; Laboratory of Nanoscience for Energy Technologies (LNET), STI, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
  • Sabzehparvar M; Laboratory of Nanoscience for Energy Technologies (LNET), STI, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
  • Karaman CO; Laboratory of Nanoscience for Energy Technologies (LNET), STI, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
  • Sundararaman R; Department of Materials Science & Engineering, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180, United States.
  • Tagliabue G; Laboratory of Nanoscience for Energy Technologies (LNET), STI, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
ACS Energy Lett ; 8(10): 4242-4250, 2023 Oct 13.
Article en En | MEDLINE | ID: mdl-37854045
Harnessing nonequilibrium hot carriers from plasmonic metal nanostructures constitutes a vibrant research field with the potential to control photochemical reactions, particularly for solar fuel generation. However, a comprehensive understanding of the interplay of plasmonic hot-carrier-driven processes in metal/semiconducting heterostructures has remained elusive. In this work, we reveal the complex interdependence among plasmon excitation, hot-carrier generation, transport, and interfacial collection in plasmonic photocatalytic devices, uniquely determining the charge injection efficiency at the solid/liquid interface. Measuring the internal quantum efficiency of ultrathin (14-33 nm) single-crystalline plasmonic gold (Au) nanoantenna arrays on titanium dioxide substrates, we find that the performance of the device is limited by hot hole collection at the metal/electrolyte interface. Our solid- and liquid-state experimental approach, combined with ab initio simulations, demonstrates more efficient collection of high-energy d-band holes traveling in the [111] orientation, enhancing oxidation reactions on {111} surfaces. These findings establish new guidelines for optimizing plasmonic photocatalytic systems and optoelectronic devices.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Energy Lett Año: 2023 Tipo del documento: Article País de afiliación: Suiza Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Energy Lett Año: 2023 Tipo del documento: Article País de afiliación: Suiza Pais de publicación: Estados Unidos