Your browser doesn't support javascript.
loading
Cancer stem cell-derived CHI3L1 activates the MAF/CTLA4 signaling pathway to promote immune escape in triple-negative breast cancer.
Ji, Shufeng; Yu, Hao; Zhou, Dan; Fan, Xulong; Duan, Yan; Tan, Yijiang; Lang, Min; Shao, Guoli.
Afiliación
  • Ji S; Special Medical Service Center, General Surgery, Zhujiang Hospital of Southern Medical University, No. 253, Middle Gongye Avenue, Haizhu District, Guangzhou, 510280, Guangdong, People's Republic of China.
  • Yu H; Special Medical Service Center, General Surgery, Zhujiang Hospital of Southern Medical University, No. 253, Middle Gongye Avenue, Haizhu District, Guangzhou, 510280, Guangdong, People's Republic of China.
  • Zhou D; Department of Breast Surgery, The First People's Hospital of Foshan, Foshan, 528000, People's Republic of China.
  • Fan X; Department of Breast Surgery, Maternity and Children's Healthcare Hospital of Foshan, Foshan, 528000, People's Republic of China.
  • Duan Y; Special Medical Service Center, General Surgery, Zhujiang Hospital of Southern Medical University, No. 253, Middle Gongye Avenue, Haizhu District, Guangzhou, 510280, Guangdong, People's Republic of China.
  • Tan Y; Special Medical Service Center, General Surgery, Zhujiang Hospital of Southern Medical University, No. 253, Middle Gongye Avenue, Haizhu District, Guangzhou, 510280, Guangdong, People's Republic of China.
  • Lang M; Special Medical Service Center, General Surgery, Zhujiang Hospital of Southern Medical University, No. 253, Middle Gongye Avenue, Haizhu District, Guangzhou, 510280, Guangdong, People's Republic of China.
  • Shao G; Special Medical Service Center, General Surgery, Zhujiang Hospital of Southern Medical University, No. 253, Middle Gongye Avenue, Haizhu District, Guangzhou, 510280, Guangdong, People's Republic of China. shaojuhai@126.com.
J Transl Med ; 21(1): 721, 2023 10 14.
Article en En | MEDLINE | ID: mdl-37838657
BACKGROUND: Triple-negative breast cancer (TNBC) development may be associated with tumor immune escape. This study explores whether the CHI3L1/MAF/CTLA4/S100A4 axis affects immune escape in TNBC through interplay with triple-negative breast cancer stem cells (TN-BCSCs). OBJECTIVE: The aim of this study is to utilize single-cell transcriptome sequencing (scRNA-seq) to uncover the molecular mechanisms by which the CHI3L1/MAF/CTLA4 signaling pathway may mediate immune evasion in triple-negative breast cancer through the interaction between tumor stem cells (CSCs) and immune cells. METHODS: Cell subsets in TNBC tissues were obtained through scRNA-seq, followed by screening differentially expressed genes in TN-BCSCs and B.C.s (CD44+ and CD24-) and predicting the transcription factor regulated by CHI3L1. Effect of CHI3L1 on the stemness phenotype of TNBC cells investigated. Effects of BCSCs-231-derived CHI3L1 on CTLA4 expression in T cells were explored after co-culture of BCSCs-231 cells obtained from microsphere culture of TN-BCSCs with T cells. BCSCs-231-treated T cells were co-cultured with CD8+ T cells to explore the resultant effect on T cell cytotoxicity. An orthotopic B.C. transplanted tumor model in mice with humanized immune systems was constructed, in which the Role of CHI3L1/MAF/CTLA4 in the immune escape of TNBC was explored. RESULTS: Eight cell subsets were found in the TNBC tissues, and the existence of TN-BCSCs was observed in the epithelial cell subset. CHI3L1 was related to the stemness phenotype of TNBC cells. TN-BCSC-derived CHI3L1 increased CTLA4 expression in T cells through MAF, inhibiting CD8+ T cell cytotoxicity and inducing immunosuppression. Furthermore, the CTLA4+ T cells might secrete S100A4 to promote the stemness phenotype of TNBC cells. CONCLUSIONS: TN-BCSC-derived CHI3L1 upregulates CTLA4 expression in T cells through MAF, suppressing the function of CD8+ T cells, which promotes the immune escape of TNBC.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Neoplasias de la Mama Triple Negativas Límite: Animals / Humans Idioma: En Revista: J Transl Med Año: 2023 Tipo del documento: Article Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Neoplasias de la Mama Triple Negativas Límite: Animals / Humans Idioma: En Revista: J Transl Med Año: 2023 Tipo del documento: Article Pais de publicación: Reino Unido