Your browser doesn't support javascript.
loading
Terahertz imaging for non-invasive classification of healthy and cimiciato-infected hazelnuts.
Gennari, Fulvia; Pagano, Mario; Toncelli, Alessandra; Lisanti, Maria Tiziana; Paoletti, Riccardo; Roversi, Pio Federico; Tredicucci, Alessandro; Giaccone, Matteo.
Afiliación
  • Gennari F; Dipartimento di Fisica "E. Fermi", Università di Pisa, Largo B. Pontecorvo 3, 56127, Pisa, Italy.
  • Pagano M; Institute of Research on Terrestrial Ecosystems (IRET), National Research Council (CNR), Via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy.
  • Toncelli A; Dipartimento di Fisica "E. Fermi", Università di Pisa, Largo B. Pontecorvo 3, 56127, Pisa, Italy.
  • Lisanti MT; Centro per l'Integrazione della Strumentazione dell'Università di Pisa (CISUP), Lungarno Pacinotti 43/44, 56126, Pisa, Italy.
  • Paoletti R; Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, Largo B. Pontecorvo 3, 56127, Pisa, Italy.
  • Roversi PF; Istituto Nanoscienze - CNR, Piazza S. Silvestro 12, 56127, Pisa, Italy.
  • Tredicucci A; Università degli Studi di Napoli Federico II, Dipartimento di Agraria, Sezione di Scienze della Vigna e del Vino, viale Italia 60, 83100, Avellino, Italy.
  • Giaccone M; Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, Largo B. Pontecorvo 3, 56127, Pisa, Italy.
Heliyon ; 9(9): e19891, 2023 Sep.
Article en En | MEDLINE | ID: mdl-37809509
The development of new non-invasive approaches able to recognize defective food is currently a lively field of research. In particular, a simple and non-destructive method able to recognize defective hazelnuts, such as cimiciato-infected ones, in real-time is still missing. This study has been designed to detect the presence of such damaged hazelnuts. To this aim, a measurement setup based on terahertz (THz) radiation has been developed. Images of a sample of 150 hazelnuts have been acquired in the low THz range by a compact and portable active imaging system equipped with a 0.14 THz source and identified as Healthy Hazelnuts (HH) or Cimiciato Hazelnut (CH) after visual inspection. All images have been analyzed to find the average transmission of the THz radiation within the sample area. The differences in the distribution of the two populations have been used to set up a classification scheme aimed at the discrimination between healthy and injured samples. The performance of the classification scheme has been assessed through the use of the confusion matrix on 50 samples. The False Positive Rate (FPR) and True Negative Rate (TNR) are 0% and 100%, respectively. On the other hand, the True Positive Rate (TPR) and False Negative Rate (FNR) are 75% and 25%, respectively. These results are relevant from the perspective of the development of a simple, automatic, real-time method for the discrimination of cimiciato-infected hazelnuts in the processing industry.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Heliyon Año: 2023 Tipo del documento: Article País de afiliación: Italia Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Heliyon Año: 2023 Tipo del documento: Article País de afiliación: Italia Pais de publicación: Reino Unido