Your browser doesn't support javascript.
loading
[Influence of pH value on tube formation of human dermal microvascular endothelial cells and its molecular mechanism].
Wang, X L; Li, J; Bian, Y Q; Li, J Q; Li, X Y.
Afiliación
  • Wang XL; Department of Plastic and Burn Surgery, the Second Affiliated Hospital, Air Force Medical University, Xi'an 710038, China.
  • Li J; Department of Plastic and Burn Surgery, the Second Affiliated Hospital, Air Force Medical University, Xi'an 710038, China.
  • Bian YQ; Department of Plastic and Burn Surgery, the Second Affiliated Hospital, Air Force Medical University, Xi'an 710038, China.
  • Li JQ; Department of Plastic and Burn Surgery, the Second Affiliated Hospital, Air Force Medical University, Xi'an 710038, China.
  • Li XY; Department of Plastic and Burn Surgery, the Second Affiliated Hospital, Air Force Medical University, Xi'an 710038, China.
Article en Zh | MEDLINE | ID: mdl-37805696
Objective: To explore the influence of pH value on tube formation of human dermal microvascular endothelial cells (HDMECs) and study its molecular mechanism, so as to provide theoretical basis for the study of promoting angiogenesis in the process of wound healing. Methods: The experimental study methods were applied. HDMECs of 4 or 5 passages in the logarithmic growth phase were collected for experiments. Culture mediums with pH values of 6.4, 6.6, 6.8, 7.0, 7.2, 7.4, 7.6, and 7.8 were prepared, and the cells were adaptively cultured (the same culture method below) for 24 h before further experiments being carried out. After another 36 h of culture, the relative fluorescence value of cytoplasmic pH value was measured by flow cytometry, and the correlation analysis between the relative fluorescence value of cytoplasmic pH value and the medium pH value was carried out. After another 1.5, 2.5, 3.5, 4.5, and 5.5 days of culture, the cell proliferation activity was detected with cell counting kit 8. OrisTM cell migration detection kit was used to detect the remaining area of cell migration at 0 (immediately), 24, and 48 h after removing the cell seeding stopper. Three-dimensional stromal gel cell tube formation experiment was carried out to detect the lumen diameter of tube formed by cells after another 48 h of culture. The protein expressions of phosphorylation sites 473 and 308 of protein kinase B (Akt) were detected by Western blotting after another 48 h of culture. The sample number was 3. Data were statistically analyzed with Pearson correlation analysis, one-way analysis of variance, analysis of variance for factorial design, analysis of variance for repeated measurement, and Bonferroni correction. Results: After another 36 h of culture, the relative fluorescence values of cytoplasmic pH value of cells cultured in pH 6.8-7.8 mediums were significantly higher than the level in pH 6.4 medium (P<0.05); compared with those in pH 6.6-7.0 mediums, the relative fluorescence values of cytoplasmic pH value of cells cultured in pH 7.4-7.8 mediums were significantly increased (P<0.05), and the relative fluorescence value of cytoplasmic pH value of cells cultured in pH 6.6 medium was significantly lower than that in pH 7.0 or 7.2 mediun (with P values all <0.05); the relative fluorescence values of cytoplasmic pH value of cells cultured in pH 7.6 and 7.8 mediums were significantly higher than those in pH 7.2 and 7.4 mediums (P<0.05). The relative fluorescence value of cytoplasmic pH value was significantly positively correlated with the medium pH value (r=0.99, P<0.05). The proliferation activity was similar among cells cultured in 8 mediums of different pH values for another 1.5 days (P>0.05). After another 2.5 days of culture, the proliferation activity of cells cultured in pH 6.4-6.8 mediums was significantly decreased compared with that in pH 7.6 medium (P<0.05). After another 3.5 days of culture, the proliferation activity of cells cultured in pH 7.0-7.8 mediums was significantly higher than that in pH 6.4-6.8 mediums (P<0.05); compared with that in pH 7.6 medium, the proliferation activity of cells cultured in pH 7.0-7.4 and 7.8 mediums was significantly decreased (P<0.05). After another 4.5 or 5.5 days of culture, the proliferation activity of cells cultured in pH 6.8-7.8 mediums was significantly higher than that in pH 6.4 medium (P<0.05); compared with that in pH 6.6 and 6.8 mediums, the proliferation activity of cells cultured in pH 7.0-7.8 mediums was significantly increased (P<0.05). After another 4.5 days of culture, the proliferation activity of cells cultured in pH 7.6 medium was significantly higher than that in pH 7.0 medium (P<0.05). After another 5.5 days of culture, the proliferation activity of cells cultured in pH 7.2-7.6 mediums was significantly increased compared with that in pH 7.0 medium (P<0.05); the proliferation activity of cells cultured in pH 7.2 and 7.4 mediums was significantly lower than that in pH 7.6 medium (with P values all <0.05) but significantly higher than that in pH 7.6 medium (with P values all <0.05). Immediately after removing the cell seeding stopper, the remaining migration areas were similar among cells cultured in 8 mediums of different pH values (P>0.05). At 24 h after removing the cell seeding stopper, the remaining migration areas of cells cultured in pH 6.6-7.8 mediums were significantly smaller than the area in pH 6.4 medium (P<0.05); compared with those in pH 6.6 and 6.8 mediums, the remaining migration areas of cells cultured in pH 7.0 to 7.6 mediums were significantly reduced (P<0.05). At 48 h after removing the cell seeding stopper, compared with those in pH 6.4 and 6.6 mediums, the remaining migration areas of cells cultured in pH 7.0-7.8 mediums were significantly reduced (P<0.05); the remaining migration areas of cells cultured in pH 7.2 and 7.4 mediums were significantly smaller than those in pH 6.8, 7.0, and 7.8 mediums (P<0.05) but significantly larger than the area in pH 7.6 medium (P<0.05); the remaining migration area of cells cultured in pH 7.6 medium was significantly smaller than that in pH 6.8 or 7.8 medium (with P values all <0.05). After another 48 h of culture, the lumen diameters of tubes formed by cells cultured in pH 7.0, 7.2, 7.4, 7.6, and 7.8 mediums were (5.0±0.5), (7.6±0.9), (8.5±0.7), (11.0±0.8), and (5.3±0.8) µm, respectively, which were significantly longer than (2.8±0.8) µm in pH 6.4 medium (P<0.05); the lumen diameters of tubes formed by cells cultured in pH 6.6 ((4.2±0.3) µm), 6.8 ((4.5±0.6) µm), 7.0, and 7.8 mediums were significantly shorter than the diameter in pH 7.6 medium (P<0.05). After another 48 h of culture, compared with those in pH 6.4 and 6.6 mediums, the protein expressions of Akt phosphorylation sites 473 and 308 of cells cultured in pH 6.8 to 7.8 mediums were significantly increased (P<0.05). Moreover, the protein expression of Akt phosphorylation site 308 of cells cultured in pH 6.6 medium was significantly higher than that in pH 6.4 medium (P<0.05); compared with the expression in pH 6.8 medium, the protein expressions of Akt phosphorylation site 473 of cells cultured in pH 7.0 and 7.4-7.8 mediums were significantly increased (P<0.05); compared with the expression in pH 7.6 medium, the protein expressions of Akt phosphorylation site 473 of cells cultured in pH 7.0-7.4 and 7.8 mediums were significantly decreased (P<0.05); compared with the expression in pH 7.8 medium, the protein expressions of Akt phosphorylation site 308 of cells cultured in pH 7.0 to 7.6 mediums were significantly increased (P<0.05). Conclusions: pH value can regulate the lumen diameter of HDMEC-formed capillaries, which is closely related to the activation of Akt. 7.2-7.6 is the appropriate pH value for constructing tissue engineered capillaries.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Células Endoteliales / Proteínas Proto-Oncogénicas c-akt Límite: Humans Idioma: Zh Revista: Zhonghua Shao Shang Yu Chuang Mian Xiu Fu Za Zhi Año: 2023 Tipo del documento: Article País de afiliación: China Pais de publicación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Células Endoteliales / Proteínas Proto-Oncogénicas c-akt Límite: Humans Idioma: Zh Revista: Zhonghua Shao Shang Yu Chuang Mian Xiu Fu Za Zhi Año: 2023 Tipo del documento: Article País de afiliación: China Pais de publicación: China