Crowdsourced audit of Twitter's recommender systems.
Sci Rep
; 13(1): 16815, 2023 10 05.
Article
en En
| MEDLINE
| ID: mdl-37798318
This research conducts an audit of Twitter's recommender system, aiming to examine the disparities between users' curated timelines and their subscription choices. Through the combined use of a browser extension and data collection via the Twitter API, our investigation reveals a high amplification of friends from the same community, a preference for amplifying emotionally charged and toxic tweets and an uneven algorithmic amplification across friends' political leaning. This audit emphasizes the importance of transparency, and increased awareness regarding the impact of algorithmic curation.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Medios de Comunicación Sociales
/
Colaboración de las Masas
Límite:
Humans
Idioma:
En
Revista:
Sci Rep
Año:
2023
Tipo del documento:
Article
País de afiliación:
Francia
Pais de publicación:
Reino Unido