Your browser doesn't support javascript.
loading
Deep Learning Modeling of Cardiac Arrhythmia Classification on Information Feature Fusion Image with Attention Mechanism.
Zhang, Mingming; Jin, Huiyuan; Zheng, Bin; Luo, Wenbo.
Afiliación
  • Zhang M; Faculty of Science, Beijing University of Technology, Beijing 100124, China.
  • Jin H; Zhengzhou Aerotropolis Institute of Artificial Intelligence, Zhengzhou 451162, China.
  • Zheng B; Faculty of Science, Beijing University of Technology, Beijing 100124, China.
  • Luo W; Faculty of Science, Beijing University of Technology, Beijing 100124, China.
Entropy (Basel) ; 25(9)2023 Aug 26.
Article en En | MEDLINE | ID: mdl-37761563
The electrocardiogram (ECG) is a crucial tool for assessing cardiac health in humans. Aiming to enhance the accuracy of ECG signal classification, a novel approach is proposed based on relative position matrix and deep learning network information features for the classification task in this paper. The approach improves the feature extraction capability and classification accuracy via techniques of image conversion and attention mechanism. In terms of the recognition strategy, this paper presents an image conversion using relative position matrix information. This information is utilized to describe the relative spatial relationships between different waveforms, and the image identification is successfully applied to the Gam-Resnet18 deep learning network model with a transfer learning concept for classification. Ultimately, this model achieved a total accuracy of 99.30%, an average positive prediction rate of 98.76%, a sensitivity of 98.90%, and a specificity of 99.84% with the relative position matrix approach. To evaluate the effectiveness of the proposed method, different image conversion techniques are compared on the test set. The experimental results demonstrate that the relative position matrix information can better reflect the differences between various types of arrhythmias, thereby improving the accuracy and stability of classification.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Entropy (Basel) Año: 2023 Tipo del documento: Article País de afiliación: China Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Entropy (Basel) Año: 2023 Tipo del documento: Article País de afiliación: China Pais de publicación: Suiza