Dimensionality reduction methods for extracting functional networks from large-scale CRISPR screens.
Mol Syst Biol
; 19(11): e11657, 2023 Nov 09.
Article
en En
| MEDLINE
| ID: mdl-37750448
CRISPR-Cas9 screens facilitate the discovery of gene functional relationships and phenotype-specific dependencies. The Cancer Dependency Map (DepMap) is the largest compendium of whole-genome CRISPR screens aimed at identifying cancer-specific genetic dependencies across human cell lines. A mitochondria-associated bias has been previously reported to mask signals for genes involved in other functions, and thus, methods for normalizing this dominant signal to improve co-essentiality networks are of interest. In this study, we explore three unsupervised dimensionality reduction methods-autoencoders, robust, and classical principal component analyses (PCA)-for normalizing the DepMap to improve functional networks extracted from these data. We propose a novel "onion" normalization technique to combine several normalized data layers into a single network. Benchmarking analyses reveal that robust PCA combined with onion normalization outperforms existing methods for normalizing the DepMap. Our work demonstrates the value of removing low-dimensional signals from the DepMap before constructing functional gene networks and provides generalizable dimensionality reduction-based normalization tools.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Oncogenes
/
Redes Reguladoras de Genes
Tipo de estudio:
Clinical_trials
Límite:
Humans
Idioma:
En
Revista:
Mol Syst Biol
Asunto de la revista:
BIOLOGIA MOLECULAR
/
BIOTECNOLOGIA
Año:
2023
Tipo del documento:
Article
País de afiliación:
Estados Unidos
Pais de publicación:
Reino Unido