Artificial dragonfly algorithm in the Hopfield neural network for optimal Exact Boolean k satisfiability representation.
PLoS One
; 18(9): e0286874, 2023.
Article
en En
| MEDLINE
| ID: mdl-37747876
This study proposes a novel hybrid computational approach that integrates the artificial dragonfly algorithm (ADA) with the Hopfield neural network (HNN) to achieve an optimal representation of the Exact Boolean kSatisfiability (EBkSAT) logical rule. The primary objective is to investigate the effectiveness and robustness of the ADA algorithm in expediting the training phase of the HNN to attain an optimized EBkSAT logic representation. To assess the performance of the proposed hybrid computational model, a specific Exact Boolean kSatisfiability problem is constructed, and simulated data sets are generated. The evaluation metrics employed include the global minimum ratio (GmR), root mean square error (RMSE), mean absolute percentage error (MAPE), and network computational time (CT) for EBkSAT representation. Comparative analyses are conducted between the results obtained from the proposed model and existing models in the literature. The findings demonstrate that the proposed hybrid model, ADA-HNN-EBkSAT, surpasses existing models in terms of accuracy and computational time. This suggests that the ADA algorithm exhibits effective compatibility with the HNN for achieving an optimal representation of the EBkSAT logical rule. These outcomes carry significant implications for addressing intricate optimization problems across diverse domains, including computer science, engineering, and business.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Algoritmos
/
Redes Neurales de la Computación
Tipo de estudio:
Prognostic_studies
Idioma:
En
Revista:
PLoS One
Asunto de la revista:
CIENCIA
/
MEDICINA
Año:
2023
Tipo del documento:
Article
País de afiliación:
Arabia Saudita
Pais de publicación:
Estados Unidos