Your browser doesn't support javascript.
loading
Evaluation of sediment phosphorus dynamics in cascade reservoir systems: A case study of Weiyuan River, China.
Yin, Yuepeng; Zhang, Wen; Cao, Xi; Chen, Xuemei; Tang, Jinyong; Zhou, Yuxin; Li, Qingman.
Afiliación
  • Yin Y; State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil& Water Pollution, College of Ecology and Environment, Chengdu U
  • Zhang W; State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil& Water Pollution, College of Ecology and Environment, Chengdu U
  • Cao X; State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil& Water Pollution, College of Ecology and Environment, Chengdu U
  • Chen X; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
  • Tang J; State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil& Water Pollution, College of Ecology and Environment, Chengdu U
  • Zhou Y; State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil& Water Pollution, College of Ecology and Environment, Chengdu U
  • Li Q; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
J Environ Manage ; 346: 118980, 2023 Nov 15.
Article en En | MEDLINE | ID: mdl-37741190
Reservoirs tend to accumulate phosphorus (P) originating from agriculture, industry, and other upstream sources in sediment, with this stored P later released. However, the spatiotemporal dynamics of sediment P release in reservoirs remains unclear. This study investigated the spatiotemporal dynamics in P of the sediment and water of three cascade reservoirs in the Weiyuan River (Tuojiang tributary). The results showed elevated P in sediment [total P (TP): 1208.93 mg kg-1] and water (TP: 0.23 mg L-1) during the low-water season (LWS), which could be attributed to notably higher organic matter content (9.65%), finer particle size (20.95 µm), and extended hydraulic retention time (HRT: 13.13 days) downstream of the cascade reservoirs. Further study employing static in-situ diffusive gradient in thin films (DGT) and dynamic ex-situ adsorption kinetic experiments confirmed that the downstream release of P from sediments [diffusion flux (Fd): 1.67 mg m-2 d-1, equilibrium P concentrations (EPC0): 0.22 ± 0.10 mg L-1] greatly exceeded those upstream (-0.66 ± 0.17 mg m-2 d-1, 0.07 ± 0.001 mg L-1), Fe (II) was a critical factor in regulating sedimentary P release. The combined effects of high P in overlying water and sediment significantly stimulated downstream phytoplankton growth, particularly among cyanobacteria (26.48%) and green algae (8.33%). Further regulatory steps are needed to regulate LWS algal blooms downstream of cascade reservoirs.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Environ Manage Año: 2023 Tipo del documento: Article Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Environ Manage Año: 2023 Tipo del documento: Article Pais de publicación: Reino Unido