Your browser doesn't support javascript.
loading
Multiparametric machine learning algorithm for human papillomavirus status and survival prediction in oropharyngeal cancer patients.
Fazelpour, Sherwin; Vejdani-Jahromi, Maryam; Kaliaev, Artem; Qiu, Edwin; Goodman, Deniz; Andreu-Arasa, V Carlota; Fujima, Noriyuki; Sakai, Osamu.
Afiliación
  • Fazelpour S; Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA.
  • Vejdani-Jahromi M; Department of Radiology, Boston Medical Center, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA.
  • Kaliaev A; Department of Radiology, Boston Medical Center, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA.
  • Qiu E; Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA.
  • Goodman D; Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA.
  • Andreu-Arasa VC; Department of Radiology, Boston Medical Center, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA.
  • Fujima N; Department of Radiology, VA Boston Healthcare System, Boston, Massachusetts, USA.
  • Sakai O; Department of Radiology, Boston Medical Center, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA.
Head Neck ; 45(11): 2882-2892, 2023 11.
Article en En | MEDLINE | ID: mdl-37740534
BACKGROUND: Human papillomavirus (HPV) status influences prognosis in oropharyngeal cancer (OPC). Identifying high-risk patients are critical to improving treatment. We aim to provide a noninvasive opportunity for managing OPC patients by training multiple machine learning pipelines to determine the best model for characterizing HPV status and survival. METHODS: Multi-parametric algorithms were designed using a 492 OPC patient database. HPV status incorporated age, sex, smoking/drinking habits, cancer subsite, TNM, and AJCC 7th edition staging. Survival considered HPV model inputs plus HPV status. Patients were split 4:1 training: testing. Algorithm efficacy was assessed through accuracy and area under the receiver operator characteristic curve (AUC). RESULTS: From 31 HPV status models, ensemble yielded 0.83 AUC and 78.7% accuracy. From 38 survival models, ensemble yielded 0.91 AUC and 87.7% accuracy. CONCLUSION: Results reinforce artificial intelligence's potential to use tumor imaging and patient characterizations for HPV status and outcome prediction. Utilizing these algorithms can optimize clinical guidance and patient care noninvasively.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Neoplasias Orofaríngeas / Infecciones por Papillomavirus Tipo de estudio: Guideline / Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Head Neck Asunto de la revista: NEOPLASIAS Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Neoplasias Orofaríngeas / Infecciones por Papillomavirus Tipo de estudio: Guideline / Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Head Neck Asunto de la revista: NEOPLASIAS Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos