Managing Excess Lead Iodide with Ordered Distribution and Reduced Photoactivity via Chelating Ligands for Stable Inverted Perovskite Solar Cells.
J Phys Chem Lett
; 14(38): 8604-8611, 2023 Sep 28.
Article
en En
| MEDLINE
| ID: mdl-37726867
Excess lead iodide (PbI2) aggregates distributed in perovskite photoreactive absorbers will perturb carrier collection and become a key source of instability in PSCs. Herein, a multisite heterocyclic ligand of 2-mercaptonicotinic acid (2-MNA) is introduced as a chelating agent to manage excess PbI2 in inverted PSCs. The chelating coordination of 2-MNA to Pb2+ ions through the carbonyl, sulfhydryl, and pyridinyl groups enables a high-quality perovskite film with reduced PbI2 aggregates and the formation of an ordered distribution at grain boundaries. Moreover, the coordination of 2-MNA with the [PbX6]4- octahedron effectively inhibits the photodecomposition of PbI2-rich perovskites, thus preventing the generation of metallic lead (Pb0) and iodine (I2) species in response to environmental stimuli. As a result, the inverted PSC based on a 2-MNA modified triple cation perovskite photoactive layer achieves a PCE of 21.27% and a fill factor of 82.07%, accompanied by improved thermal and photostability.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
J Phys Chem Lett
Año:
2023
Tipo del documento:
Article
País de afiliación:
China
Pais de publicación:
Estados Unidos