Spatial transcriptomics reveals light-induced chlorenchyma cells involved in promoting shoot regeneration in tomato callus.
Proc Natl Acad Sci U S A
; 120(38): e2310163120, 2023 09 19.
Article
en En
| MEDLINE
| ID: mdl-37703282
Callus is a reprogrammed cell mass involved in plant regeneration and gene transformation in crop engineering. Pluripotent callus cells develop into fertile shoots through shoot regeneration. The molecular basis of the shoot regeneration process in crop callus remains largely elusive. This study pioneers the exploration of the spatial transcriptome of tomato callus during shoot regeneration. The findings reveal the presence of highly heterogeneous cell populations within the callus, including epidermis, vascular tissue, shoot primordia, inner callus, and outgrowth shoots. By characterizing the spatially resolved molecular features of shoot primordia and surrounding cells, specific factors essential for shoot primordia formation are identified. Notably, chlorenchyma cells, enriched in photosynthesis-related processes, play a crucial role in promoting shoot primordia formation and subsequent shoot regeneration. Light is shown to promote shoot regeneration by inducing chlorenchyma cell development and coordinating sugar signaling. These findings significantly advance our understanding of the cellular and molecular aspects of shoot regeneration in tomato callus and demonstrate the immense potential of spatial transcriptomics in plant biology.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Solanum lycopersicum
Tipo de estudio:
Prognostic_studies
Idioma:
En
Revista:
Proc Natl Acad Sci U S A
Año:
2023
Tipo del documento:
Article
País de afiliación:
China
Pais de publicación:
Estados Unidos