Your browser doesn't support javascript.
loading
Computational exploration of the global microbiome for antibiotic discovery.
Santos-Júnior, Célio Dias; Der Torossian Torres, Marcelo; Duan, Yiqian; Del Río, Álvaro Rodríguez; Schmidt, Thomas S B; Chong, Hui; Fullam, Anthony; Kuhn, Michael; Zhu, Chengkai; Houseman, Amy; Somborski, Jelena; Vines, Anna; Zhao, Xing-Ming; Bork, Peer; Huerta-Cepas, Jaime; de la Fuente-Nunez, Cesar; Coelho, Luis Pedro.
Afiliación
  • Santos-Júnior CD; Institute of Science and Technology for Brain-Inspired Intelligence - ISTBI, Fudan University, Shanghai, China.
  • Der Torossian Torres M; Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania; Philadelphia, Pennsylvania, United States of America.
  • Duan Y; Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania; Philadelphia, Pennsylvania, United States of America.
  • Del Río ÁR; Penn Institute for Computational Science, University of Pennsylvania; Philadelphia, Pennsylvania, United States of America.
  • Schmidt TSB; Institute of Science and Technology for Brain-Inspired Intelligence - ISTBI, Fudan University, Shanghai, China.
  • Chong H; Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Campus de Montegancedo-UPM, 28223 Pozuelo de Alarcón, Madrid, Spain.
  • Fullam A; Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
  • Kuhn M; Institute of Science and Technology for Brain-Inspired Intelligence - ISTBI, Fudan University, Shanghai, China.
  • Zhu C; Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
  • Houseman A; Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
  • Somborski J; Institute of Science and Technology for Brain-Inspired Intelligence - ISTBI, Fudan University, Shanghai, China.
  • Vines A; Institute of Science and Technology for Brain-Inspired Intelligence - ISTBI, Fudan University, Shanghai, China.
  • Zhao XM; Institute of Science and Technology for Brain-Inspired Intelligence - ISTBI, Fudan University, Shanghai, China.
  • Bork P; Institute of Science and Technology for Brain-Inspired Intelligence - ISTBI, Fudan University, Shanghai, China.
  • Huerta-Cepas J; Institute of Science and Technology for Brain-Inspired Intelligence - ISTBI, Fudan University, Shanghai, China.
  • de la Fuente-Nunez C; Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China.
  • Coelho LP; State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, China.
bioRxiv ; 2023 Sep 11.
Article en En | MEDLINE | ID: mdl-37693522
Novel antibiotics are urgently needed to combat the antibiotic-resistance crisis. We present a machine learning-based approach to predict prokaryotic antimicrobial peptides (AMPs) by leveraging a vast dataset of 63,410 metagenomes and 87,920 microbial genomes. This led to the creation of AMPSphere, a comprehensive catalog comprising 863,498 non-redundant peptides, the majority of which were previously unknown. We observed that AMP production varies by habitat, with animal-associated samples displaying the highest proportion of AMPs compared to other habitats. Furthermore, within different human-associated microbiota, strain-level differences were evident. To validate our predictions, we synthesized and experimentally tested 50 AMPs, demonstrating their efficacy against clinically relevant drug-resistant pathogens both in vitro and in vivo. These AMPs exhibited antibacterial activity by targeting the bacterial membrane. Additionally, AMPSphere provides valuable insights into the evolutionary origins of peptides. In conclusion, our approach identified AMP sequences within prokaryotic microbiomes, opening up new avenues for the discovery of antibiotics.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: BioRxiv Año: 2023 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: BioRxiv Año: 2023 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos