Expression of hypoxia-inducible genes is suppressed in altered gravity due to impaired nuclear HIF1α accumulation.
Sci Rep
; 13(1): 14514, 2023 09 04.
Article
en En
| MEDLINE
| ID: mdl-37666879
Extravehicular activities, the backbone of manned space exploration programs, set astronauts into mild hypoxia. Unfortunately, microgravity aggravates threatening symptoms of hypoxia such as vision impairment and brain edema. Hypoxia-inducible factors (HIFs) sense cellular hypoxia and, subsequently, change the cells' expression profile instantaneously by rapidly translocating-most likely cytoskeleton-dependently-into the nucleus and subsequently forming transcription complexes with other proteins. We tested the hypothesis that this fundamental process could be altered by sudden changes in gravitational forces in parabolic flights using a newly developed pocket-size cell culture lab that deoxygenizes cells within 15 min. Sudden gravity changes (SGCs 1g-1.8g-0g-1.8g-1g) during hypoxic exposure suppressed expression of the HIF1α-dependent genes investigated as compared with hypoxia at constant 1g. Normoxic cells subjected to SGCs showed reduced nuclear but not cytoplasmatic HIF1α signal and appeared to have disturbed cytoskeleton architecture. Inhibition of the actin-dependent intracellular transport using a combination of myosin V and VI inhibitors during hypoxia mimicked the suppression of the HIF1α-dependent genes observed during hypoxic exposure during SGCs. Thus, SGCs seem to disrupt the cellular response to hypoxia by impairing the actin-dependent translocation of HIF1α into the nucleus.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Actinas
/
Gravedad Alterada
/
Hipoxia
Límite:
Humans
Idioma:
En
Revista:
Sci Rep
Año:
2023
Tipo del documento:
Article
País de afiliación:
Suiza
Pais de publicación:
Reino Unido