Your browser doesn't support javascript.
loading
The Regulation of Phosphorus Release by Penicillium chrysogenum in Different Phosphate via the TCA Cycle and Mycelial Morphology.
Wang, Liyan; Tian, Da; Zhang, Xiaoru; Han, Mingxue; Cheng, Xiaohui; Ye, Xinxin; Zhang, Chaochun; Gao, Hongjian; Li, Zhen.
Afiliación
  • Wang L; Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, Anhui Province Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green Phosphorus Fertilizer, College of Resources and Environment, Anhui Agricultural University, Hef
  • Tian D; Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-Restoration, Ministry of Natural Resources, College of Resources and Environment, Anhui Agricultural University, Hefei, 230036, People's Republic of China.
  • Zhang X; Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, Anhui Province Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green Phosphorus Fertilizer, College of Resources and Environment, Anhui Agricultural University, Hef
  • Han M; Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-Restoration, Ministry of Natural Resources, College of Resources and Environment, Anhui Agricultural University, Hefei, 230036, People's Republic of China. tianda@ahau.edu.cn.
  • Cheng X; Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, Anhui Province Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green Phosphorus Fertilizer, College of Resources and Environment, Anhui Agricultural University, Hef
  • Ye X; Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-Restoration, Ministry of Natural Resources, College of Resources and Environment, Anhui Agricultural University, Hefei, 230036, People's Republic of China.
  • Zhang C; Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, Anhui Province Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green Phosphorus Fertilizer, College of Resources and Environment, Anhui Agricultural University, Hef
  • Gao H; Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-Restoration, Ministry of Natural Resources, College of Resources and Environment, Anhui Agricultural University, Hefei, 230036, People's Republic of China.
  • Li Z; Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, Anhui Province Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green Phosphorus Fertilizer, College of Resources and Environment, Anhui Agricultural University, Hef
J Microbiol ; 61(8): 765-775, 2023 Aug.
Article en En | MEDLINE | ID: mdl-37665553
Phosphate-solubilizing fungi (PSF) efficiently dissolve insoluble phosphates through the production of organic acids. This study investigates the mechanisms of organic acid secretion by PSF, specifically Penicillium chrysogenum, under tricalcium phosphate (Ca3(PO4)2, Ca-P) and ferric phosphate (FePO4, Fe-P) conditions. Penicillium chrysogenum exhibited higher phosphorus (P) release efficiency from Ca-P (693.6 mg/L) than from Fe-P (162.6 mg/L). However, Fe-P significantly enhanced oxalic acid (1193.7 mg/L) and citric acid (227.7 mg/L) production by Penicillium chrysogenum compared with Ca-P (905.7 and 3.5 mg/L, respectively). The presence of Fe-P upregulated the expression of genes and activity of enzymes related to the tricarboxylic acid cycle, including pyruvate dehydrogenase and citrate synthase. Additionally, Fe-P upregulated the expression of chitinase and endoglucanase genes, inducing a transformation of Penicillium chrysogenum mycelial morphology from pellet to filamentous. The filamentous morphology exhibited higher efficiency in oxalic acid secretion and P release from Fe-P and Ca-P. Compared with pellet morphology, filamentous morphology enhanced P release capacity by > 40% and > 18% in Ca-P and Fe-P, respectively. This study explored the strategies employed by PSF to improve the dissolution of different insoluble phosphates.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Microbiol Asunto de la revista: MICROBIOLOGIA Año: 2023 Tipo del documento: Article Pais de publicación: Corea del Sur

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Microbiol Asunto de la revista: MICROBIOLOGIA Año: 2023 Tipo del documento: Article Pais de publicación: Corea del Sur