Your browser doesn't support javascript.
loading
Accuracy of smartphone camera urine photo colorimetry as indicators of dehydration.
Bustam, Aida; Poh, Khadijah; Shuin Soo, Siew; Naseem, Fathmath Sausan; Md Yusuf, Mohd Hafyzuddin; Hishamudin, Naseeha Ubaidi; Azhar, Muhaimin Noor.
Afiliación
  • Bustam A; Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
  • Poh K; Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
  • Shuin Soo S; Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
  • Naseem FS; Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
  • Md Yusuf MH; Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
  • Hishamudin NU; Department of Emergency Medicine, University Malaya Medical Center, Kuala Lumpur, Malaysia.
  • Azhar MN; Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
Digit Health ; 9: 20552076231197961, 2023.
Article en En | MEDLINE | ID: mdl-37662675
Objective: Direct urine color assessment has been shown to correlate with hydration status. However, this method is subject to inter- and intra-observer variability. Digital image colorimetry provides a more objective method. This study evaluated the diagnostic accuracy of urine photo colorimetry using different smartphones under different lighting conditions, and determined the optimal cut-off value to predict clinical dehydration. Methods: The urine samples were photographed in a customized photo box, under five simulated lighting conditions, using five smartphones. The images were analyzed using Adobe Photoshop to obtain Red, Green, and Blue (RGB) values. The correlation between RGB values and urine laboratory parameters were determined. The optimal cut-off value to predict dehydration was determined using area under the receiver operating characteristic curve. Results: A total of 56 patients were included in the data analysis. Images captured using five different smartphones under five lighting conditions produced a dataset of 1400 images. The study found a statistically significant correlation between Blue and Green values with urine osmolality, sodium, urine specific gravity, protein, and ketones. The diagnostic accuracy of the Blue value for predicting dehydration were "good" to "excellent" across all phones under all lighting conditions with sensitivity >90% at cut-off Blue value of 170. Conclusions: Smartphone-based urine colorimetry is a highly sensitive tool in predicting dehydration.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Digit Health Año: 2023 Tipo del documento: Article País de afiliación: Malasia Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Digit Health Año: 2023 Tipo del documento: Article País de afiliación: Malasia Pais de publicación: Estados Unidos