Your browser doesn't support javascript.
loading
Quantifying Carbon Cycling across the Groundwater-Stream-Atmosphere Continuum Using High-Resolution Time Series of Multiple Dissolved Gases.
Wang, Chuan; Brennwald, Matthias S; Xie, Yueqing; McCallum, James L; Kipfer, Rolf; Dai, Xin; Wu, Jichun.
Afiliación
  • Wang C; Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China.
  • Brennwald MS; Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing 210023, China.
  • Xie Y; Department of Water Resources and Drinking Water, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf 8600, Switzerland.
  • McCallum JL; Department of Water Resources and Drinking Water, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf 8600, Switzerland.
  • Kipfer R; Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China.
  • Dai X; Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing 210023, China.
  • Wu J; School of Earth Sciences, University of Western Australia, Perth 6009, Western Australia, Australia.
Environ Sci Technol ; 57(36): 13487-13495, 2023 09 12.
Article en En | MEDLINE | ID: mdl-37643154
The quantification of carbon cycling across the groundwater-stream-atmosphere continuum (GSAC) is crucial for understanding regional and global carbon cycling. However, this quantification remains challenging due to highly coupled carbon exchange and turnover in the GSAC. Here, we disentangled carbon cycling processes in a representative groundwater-stream-atmosphere transect by obtaining and numerically simulating high-resolution time series of dissolved He, Ar, Kr, O2, CO2, and CH4 concentrations. The results revealed that groundwater contributed ∼60% of CO2 and ∼30% of CH4 inputs to the stream, supporting stream CO2 and CH4 emissions to the atmosphere. Furthermore, diurnal variations in stream metabolism (-0.6 to 0.6 mol O2 m-2 day-1) induced pronounced carbonate precipitation during the day and dissolution at night. The significant diurnal variability of biogeochemical processes emphasizes the importance of high-resolution time series investigations of carbon dynamics. This study shows that dissolved gases are promising environmental tracers for discerning and quantifying carbon cycling across the GSAC with high spatiotemporal resolution. Our high-resolution carbon exchange and turnover quantification provides a process-oriented and mechanistic understanding of carbon cycling across the GSAC.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Agua Subterránea / Dióxido de Carbono Idioma: En Revista: Environ Sci Technol Año: 2023 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Agua Subterránea / Dióxido de Carbono Idioma: En Revista: Environ Sci Technol Año: 2023 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos