Your browser doesn't support javascript.
loading
Analysis of Vibration Signals Based on Machine Learning for Crack Detection in a Low-Power Wind Turbine.
Rangel-Rodriguez, Angel H; Granados-Lieberman, David; Amezquita-Sanchez, Juan P; Bueno-Lopez, Maximiliano; Valtierra-Rodriguez, Martin.
Afiliación
  • Rangel-Rodriguez AH; ENAP-Research Group, CA-Sistemas Dinámicos y Control, Facultad de Ingeniería, Universidad Autónoma de Querétaro (UAQ), Campus San Juan del Río, Río Moctezuma 249, Col. San Cayetano, San Juan del Río 76807, Mexico.
  • Granados-Lieberman D; ENAP-Research Group, CA-Fuentes Alternas y Calidad de la Energía Eléctrica, Departamento de Ingeniería Electromecánica, Tecnológico Nacional de México/ITS de Irapuato, Carretera Irapuato-Silao km 12.5, Colonia El Copal, Irapuato 36821, Mexico.
  • Amezquita-Sanchez JP; ENAP-Research Group, CA-Sistemas Dinámicos y Control, Facultad de Ingeniería, Universidad Autónoma de Querétaro (UAQ), Campus San Juan del Río, Río Moctezuma 249, Col. San Cayetano, San Juan del Río 76807, Mexico.
  • Bueno-Lopez M; Departamento de Electrónica, Instrumentación y Control, Universidad del Cauca, Popayán 190002, Colombia.
  • Valtierra-Rodriguez M; ENAP-Research Group, CA-Sistemas Dinámicos y Control, Facultad de Ingeniería, Universidad Autónoma de Querétaro (UAQ), Campus San Juan del Río, Río Moctezuma 249, Col. San Cayetano, San Juan del Río 76807, Mexico.
Entropy (Basel) ; 25(8)2023 Aug 09.
Article en En | MEDLINE | ID: mdl-37628218
Currently, renewable energies, including wind energy, have been experiencing significant growth. Wind energy is transformed into electric energy through the use of wind turbines (WTs), which are located outdoors, making them susceptible to harsh weather conditions. These conditions can cause different types of damage to WTs, degrading their lifetime and efficiency, and, consequently, raising their operating costs. Therefore, condition monitoring and the detection of early damages are crucial. One of the failures that can occur in WTs is the occurrence of cracks in their blades. These cracks can lead to the further deterioration of the blade if they are not detected in time, resulting in increased repair costs. To effectively schedule maintenance, it is necessary not only to detect the presence of a crack, but also to assess its level of severity. This work studies the vibration signals caused by cracks in a WT blade, for which four conditions (healthy, light, intermediate, and severe cracks) are analyzed under three wind velocities. In general, as the proposed method is based on machine learning, the vibration signal analysis consists of three stages. Firstly, for feature extraction, statistical and harmonic indices are obtained; then, the one-way analysis of variance (ANOVA) is used for the feature selection stage; and, finally, the k-nearest neighbors algorithm is used for automatic classification. Neural networks, decision trees, and support vector machines are also used for comparison purposes. Promising results are obtained with an accuracy higher than 99.5%.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Diagnostic_studies Idioma: En Revista: Entropy (Basel) Año: 2023 Tipo del documento: Article País de afiliación: México Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Diagnostic_studies Idioma: En Revista: Entropy (Basel) Año: 2023 Tipo del documento: Article País de afiliación: México Pais de publicación: Suiza