Your browser doesn't support javascript.
loading
Degradation of dye containing in textile wastewater by sequential process: photocatalytic and biological treatment.
Mendoza Hernández, José Carlos; Pérez Osorio, Gabriela; Gutiérrez Arias, José Eligio Moisés; Castañeda Camacho, Josefina.
Afiliación
  • Mendoza Hernández JC; Faculty of Chemical Engineering, Meritorious Autonomous University of Puebla, Puebla, Mexico.
  • Pérez Osorio G; Faculty of Chemical Engineering, Meritorious Autonomous University of Puebla, Puebla, Mexico.
  • Gutiérrez Arias JEM; Faculty of Electronic Sciences, Meritorious Autonomous University of Puebla, Puebla, Mexico.
  • Castañeda Camacho J; Faculty of Electronic Sciences, Meritorious Autonomous University of Puebla, Puebla, Mexico.
Turk J Chem ; 46(6): 2046-2056, 2022.
Article en En | MEDLINE | ID: mdl-37621341
In this research, a combined photocatalytic and biological treatment is proposed for the elimination of pollutants present in textile wastewater using a natural erionite zeolite (PE) and aluminum oxide (PA) synthesized by the sol-gel method as photocatalysts, and solar radiation. Both catalysts were characterized by XRD, SEM, and EDS. For biological treatment two bacterial consortium were used: BC1 (Escherichia coli N16, Serratia k120, Pseudomonas putida B03 and Enterobacter hormaechei), and consortium BC2 (Escherichia coli N16, Serratia Mc107, Enterobacter N9, Enterobacter hormaechei Mc9). The photocatalytic and microbiological treatments were carried out initially separately and subsequently in a sequential manner, first the photocatalytic followed by the microbiological to determine if a synergistic effect was achieved. Comparing the photocatalytic performance, erionite showed higher performance of dyes degradation (54.75%) than alumina (28.62%). While in the biological process, BC1 decreased the dye concentration to 56.93% and BC2 to 53.56%. Finally, the best combined process was PA+BC1 reaching pollutants degradation 64.62%, showing that the application of both processes promotes a decolorization in textile wastewater. The water resulting from the combined photocatalysis-microbiological degradation processes was tested for toxicity using Daphnia magna, obtaining that none of the effluents shows toxicity.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Turk J Chem Año: 2022 Tipo del documento: Article País de afiliación: México Pais de publicación: Turquía

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Turk J Chem Año: 2022 Tipo del documento: Article País de afiliación: México Pais de publicación: Turquía