ZIF-8-Derived Carbon In-Situ Encapsulated Hollow Mn2SiO4 Sub-Microspheres as Anode for Lithium-Ion Batteries with Ultrahigh Capacity and Excellent Rate Performance.
ACS Appl Mater Interfaces
; 15(33): 39363-39373, 2023 Aug 23.
Article
en En
| MEDLINE
| ID: mdl-37614005
Manganese silicate (Mn2SiO4) possesses a more suitable volume expansion (186%) compared to SiOx-based materials and is also characterized by low cost, environmental friendliness, and considerable theoretical capacity. Hollow Mn2SiO4 sub-microspheres encapsulated by a highly continuous network of conductive carbon (MSC) are prepared by the self-templating method and subsequent ZIF-8-derived carbon coating. The as-prepared Mn2SiO4@C hybrid under optimal conditions (MSC-2) can provide a high capacity of 1343 mA h g-1 at 0.2 A g-1 and an excellent rate performance of 434 mA h g-1 at 10 A g-1. Even after 500 cycles, MSC-2 can still maintain a considerable specific capacity of 554 mA h g-1 at a high current density of 5.0 A g-1. Additionally, the full cell assembled with MSC-2 anode and LiFePO4 cathode (MSC-2//LFP) possesses a robust energy density of 218 W h kg-1, excellent power density of 2.5 kW kg-1, and good cycling stability.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
ACS Appl Mater Interfaces
Asunto de la revista:
BIOTECNOLOGIA
/
ENGENHARIA BIOMEDICA
Año:
2023
Tipo del documento:
Article
Pais de publicación:
Estados Unidos