Your browser doesn't support javascript.
loading
Deep learning for automated materials characterisation in core-loss electron energy loss spectroscopy.
Annys, Arno; Jannis, Daen; Verbeeck, Johan.
Afiliación
  • Annys A; EMAT, University of Antwerp, 2020, Antwerp, Belgium.
  • Jannis D; EMAT, University of Antwerp, 2020, Antwerp, Belgium.
  • Verbeeck J; Nano center of excellence, University of Antwerp, 2020, Antwerp, Belgium.
Sci Rep ; 13(1): 13724, 2023 Aug 22.
Article en En | MEDLINE | ID: mdl-37608067
Electron energy loss spectroscopy (EELS) is a well established technique in electron microscopy that yields information on the elemental content of a sample in a very direct manner. One of the persisting limitations of EELS is the requirement for manual identification of core-loss edges and their corresponding elements. This can be especially bothersome in spectrum imaging, where a large amount of spectra are recorded when spatially scanning over a sample area. This paper introduces a synthetic dataset with 736,000 labeled EELS spectra, computed from available generalized oscillator strength tables, that represents 107 K, L, M or N core-loss edges and 80 chemical elements. Generic lifetime broadened peaks are used to mimic the fine structure due to band structure effects present in experimental core-loss edges. The proposed dataset is used to train and evaluate a series of neural network architectures, being a multilayer perceptron, a convolutional neural network, a U-Net, a residual neural network, a vision transformer and a compact convolutional transformer. An ensemble of neural networks is used to further increase performance. The ensemble network is used to demonstrate fully automated elemental mapping in a spectrum image, both by directly mapping the predicted elemental content and by using the predicted content as input for a physical model-based mapping.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Sci Rep Año: 2023 Tipo del documento: Article País de afiliación: Bélgica Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Sci Rep Año: 2023 Tipo del documento: Article País de afiliación: Bélgica Pais de publicación: Reino Unido