Production of yellow-flowered gentian plants by genetic engineering of betaxanthin pigments.
New Phytol
; 240(3): 1177-1188, 2023 Nov.
Article
en En
| MEDLINE
| ID: mdl-37606277
Genetic engineering of flower color provides biotechnological products such as blue carnations or roses by accumulating delphinidin-based anthocyanins not naturally existing in these plant species. Betalains are another class of pigments that in plants are only synthesized in the order Caryophyllales. Although they have been engineered in several plant species, especially red-violet betacyanins, the yellow betaxanthins have yet to be engineered in ornamental plants. We attempted to produce yellow-flowered gentians by genetic engineering of betaxanthin pigments. First, white-flowered gentian lines were produced by knocking out the dihydroflavonol 4-reductase (DFR) gene using CRISPR/Cas9-mediated genome editing. Beta vulgaris BvCYP76AD6 and Mirabilis jalapa MjDOD, driven by gentian petal-specific promoters, flavonoid 3',5'-hydroxylase (F3'5'H) and anthocyanin 5,3'-aromatic acyltransferase (AT), respectively, were transformed into the above DFR-knockout white-flowered line; the resultant gentian plants had vivid yellow flowers. Expression analysis and pigment analysis revealed petal-specific expression and accumulation of seven known betaxanthins in their petals to c. 0.06-0.08 µmol g FW-1 . Genetic engineering of vivid yellow-flowered plants can be achieved by combining genome editing and a suitable expression of betaxanthin-biosynthetic genes in ornamental plants.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
New Phytol
Asunto de la revista:
BOTANICA
Año:
2023
Tipo del documento:
Article
País de afiliación:
Japón
Pais de publicación:
Reino Unido