Your browser doesn't support javascript.
loading
Regression-Equivalent Effect Sizes for Latent Growth Modeling and Associated Null Hypothesis Significance Tests.
Feingold, Alan.
Afiliación
  • Feingold A; Oregon Social Learning Center.
Struct Equ Modeling ; 30(4): 672-685, 2023.
Article en En | MEDLINE | ID: mdl-37588162
The effect of an independent variable on random slopes in growth modeling with latent variables is conventionally used to examine predictors of change over the course of a study. This tutorial demonstrates that the same effect of a covariate on growth can be obtained by using final status centering for parameterization and regressing the random intercepts (or the intercept factor scores) on both the independent variable and a baseline covariate--the framework used to study change with classical regression analysis. Examples are provided that illustrate the application of an intercept-focused approach to obtain effect sizes--the unstandardized regression coefficient, the standardized regression coefficient, squared semi-partial correlation, and Cohen's f2 --that estimate the same parameters as respective effect sizes from a classical regression analysis. Moreover, statistical power to detect the effect of the predictor on growth was greater when using random intercepts than the conventionally used random slopes.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Struct Equ Modeling Año: 2023 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Struct Equ Modeling Año: 2023 Tipo del documento: Article Pais de publicación: Estados Unidos