Your browser doesn't support javascript.
loading
Fundamental mechanistic insights into the catalytic reactions of Li─S redox by Co single-atom electrocatalysts via operando methods.
Xu, Weixuan; Lang, Shuangyan; Wang, Kaiyang; Zeng, Rui; Li, Huiqi; Feng, Xinran; Krumov, Mihail R; Bak, Seong-Min; Pollock, Christopher J; Yeo, Jingjie; Du, Yonghua; Abruña, Héctor D.
Afiliación
  • Xu W; Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
  • Lang S; Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
  • Wang K; Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA.
  • Zeng R; Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
  • Li H; Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
  • Feng X; Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
  • Krumov MR; Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
  • Bak SM; Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea.
  • Pollock CJ; Cornell High Energy Synchrotron Source, Wilson Laboratory, Cornell University, Ithaca, NY, 14853, USA.
  • Yeo J; Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA.
  • Du Y; National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA.
  • Abruña HD; Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
Sci Adv ; 9(33): eadi5108, 2023 Aug 18.
Article en En | MEDLINE | ID: mdl-37585528
Lithium-sulfur batteries represent an attractive option for energy storage applications. A deeper understanding of the multistep lithium-sulfur reactions and the electrocatalytic mechanisms are required to develop advanced, high-performance batteries. We have systematically investigated the lithium-sulfur redox processes catalyzed by a cobalt single-atom electrocatalyst (Co-SAs/NC) via operando confocal Raman microscopy and x-ray absorption spectroscopy (XAS). The real-time observations, based on potentiostatic measurements, indicate that Co-SAs/NC efficiently accelerates the lithium-sulfur reduction/oxidation reactions, which display zero-order kinetics. Under galvanostatic discharge conditions, the typical stepwise mechanism of long-chain and intermediate-chain polysulfides is transformed to a concurrent pathway under electrocatalysis. In addition, operando cobalt K-edge XAS studies elucidate the potential-dependent evolution of cobalt's oxidation state and the formation of cobalt-sulfur bonds. Our work provides fundamental insights into the mechanisms of catalyzed lithium-sulfur reactions via operando methods, enabling a deeper understanding of electrocatalysis and interfacial dynamics in electrical energy storage systems.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Sci Adv Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Sci Adv Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos