Your browser doesn't support javascript.
loading
High-Energy Ball Milling Promoted Sulfur Immobilization for Constructing High-Performance Na-Storage Carbon Anodes.
Ning, Meng; Wen, Jiajun; Duan, Zhihua; Cao, Xiao Guo; Chen, Jieqi; Chen, Jingxun; Yang, Qian; Ye, Xiaoji; Li, Zhenghui; Zhang, Haiyan.
Afiliación
  • Ning M; School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China.
  • Wen J; School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China.
  • Duan Z; School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China.
  • Cao XG; Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center), Guangzhou 510070, China.
  • Chen J; School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China.
  • Chen J; School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China.
  • Yang Q; School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China.
  • Ye X; School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China.
  • Li Z; Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center), Guangzhou 510070, China.
  • Zhang H; School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China.
ACS Appl Mater Interfaces ; 15(33): 39351-39362, 2023 Aug 23.
Article en En | MEDLINE | ID: mdl-37552834
Sulfur (S) doping is an effective method for constructing high-performance carbon anodes for sodium-ion batteries. However, traditional designs of S-doped carbon often exhibit low initial Coulombic efficiency (ICE), poor rate capability, and impoverished cycle performance, limiting their practical applications. This study proposes an innovative design strategy to fabricate S-doped carbon using sulfonated sugar molecules as precursors via high-energy ball milling. The results show that the high-energy ball milling can immobilize S for sulfonated sugar molecules by modulating the chemical state of S atoms, thereby creating a S-rich carbon framework with a doping level of 15.5 wt %. In addition, the S atoms are present mainly in the form of C-S bonds, facilitating a stable electrochemical reaction; meanwhile, S atoms expand the spacing between carbon layers and contribute sufficient capacitance-type Na-storage sites. Consequently, the S-doped carbon exhibits a large capacity (>600 mAh g-1), a high ICE (>90%), superior cycling stability (490 mAh g-1 after 1100 cycles at 5 A g-1), and outstanding rate performance (420 mAh g-1 at a high current density of 50 A g-1). Such excellent Na-storage properties of S-doped carbon have rarely been reported in the literatures before.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2023 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2023 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos