Your browser doesn't support javascript.
loading
Experimental validation of the free-energy principle with in vitro neural networks.
Isomura, Takuya; Kotani, Kiyoshi; Jimbo, Yasuhiko; Friston, Karl J.
Afiliación
  • Isomura T; Brain Intelligence Theory Unit, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan. takuya.isomura@riken.jp.
  • Kotani K; Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan.
  • Jimbo Y; Department of Precision Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
  • Friston KJ; Wellcome Centre for Human Neuroimaging, Queen Square Institute of Neurology, University College London, London, WC1N 3AR, UK.
Nat Commun ; 14(1): 4547, 2023 08 07.
Article en En | MEDLINE | ID: mdl-37550277
Empirical applications of the free-energy principle are not straightforward because they entail a commitment to a particular process theory, especially at the cellular and synaptic levels. Using a recently established reverse engineering technique, we confirm the quantitative predictions of the free-energy principle using in vitro networks of rat cortical neurons that perform causal inference. Upon receiving electrical stimuli-generated by mixing two hidden sources-neurons self-organised to selectively encode the two sources. Pharmacological up- and downregulation of network excitability disrupted the ensuing inference, consistent with changes in prior beliefs about hidden sources. As predicted, changes in effective synaptic connectivity reduced variational free energy, where the connection strengths encoded parameters of the generative model. In short, we show that variational free energy minimisation can quantitatively predict the self-organisation of neuronal networks, in terms of their responses and plasticity. These results demonstrate the applicability of the free-energy principle to in vitro neural networks and establish its predictive validity in this setting.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Redes Neurales de la Computación / Neuronas Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2023 Tipo del documento: Article País de afiliación: Japón Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Redes Neurales de la Computación / Neuronas Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2023 Tipo del documento: Article País de afiliación: Japón Pais de publicación: Reino Unido