Your browser doesn't support javascript.
loading
Photocross-Linkable and Shape-Memory Biomaterial Hydrogel Based on Methacrylated Cellulose Nanofibres.
Brusentsev, Yury; Yang, Peiru; King, Alistair W T; Cheng, Fang; Cortes Ruiz, Maria F; Eriksson, John E; Kilpeläinen, Ilkka; Willför, Stefan; Xu, Chunlin; Wågberg, Lars; Wang, Xiaoju.
Afiliación
  • Brusentsev Y; Laboratory of Natural Materials Technology, Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Henrikinkatu 2, 20500 Turku, Finland.
  • Yang P; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland.
  • King AWT; Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland.
  • Cheng F; Chemistry Department, University of Helsinki, Yliopistonkatu 3, 00014 Helsinki, Finland.
  • Cortes Ruiz MF; School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
  • Eriksson JE; Department of Fibre and Polymer Technology, Division of Fibre Technology, KTH Royal Institute of Technology, Teknikringen 56-58, 100 44 Stockholm, Sweden.
  • Kilpeläinen I; Department of Fibre and Polymer Technology, Wallenberg Wood Science Centre, KTH Royal Institute of Technology, Teknikringen 56-58, 100 44 Stockholm, Sweden.
  • Willför S; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland.
  • Xu C; Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland.
  • Wågberg L; Chemistry Department, University of Helsinki, Yliopistonkatu 3, 00014 Helsinki, Finland.
  • Wang X; Laboratory of Natural Materials Technology, Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Henrikinkatu 2, 20500 Turku, Finland.
Biomacromolecules ; 24(8): 3835-3845, 2023 08 14.
Article en En | MEDLINE | ID: mdl-37527286
In the context of three-dimensional (3D) cell culture and tissue engineering, 3D printing is a powerful tool for customizing in vitro 3D cell culture models that are critical for understanding the cell-matrix and cell-cell interactions. Cellulose nanofibril (CNF) hydrogels are emerging in constructing scaffolds able to imitate tissue in a microenvironment. A direct modification of the methacryloyl (MA) group onto CNF is an appealing approach to synthesize photocross-linkable building blocks in formulating CNF-based bioinks for light-assisted 3D printing; however, it faces the challenge of the low efficiency of heterogenous surface modification. Here, a multistep approach yields CNF methacrylate (CNF-MA) with a decent degree of substitution while maintaining a highly dispersible CNF hydrogel, and CNF-MA is further formulated and copolymerized with monomeric acrylamide (AA) to form a super transparent hydrogel with tuneable mechanical strength (compression modulus, approximately 5-15 kPa). The resulting photocurable hydrogel shows good printability in direct ink writing and good cytocompatibility with HeLa and human dermal fibroblast cell lines. Moreover, the hydrogel reswells in water and expands to all directions to restore its original dimension after being air-dried, with further enhanced mechanical properties, for example, Young's modulus of a 1.1% CNF-MA/1% PAA hydrogel after reswelling in water increases to 10.3 kPa from 5.5 kPa.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Nanofibras / Bioimpresión Límite: Humans Idioma: En Revista: Biomacromolecules Asunto de la revista: BIOLOGIA MOLECULAR Año: 2023 Tipo del documento: Article País de afiliación: Finlandia Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Nanofibras / Bioimpresión Límite: Humans Idioma: En Revista: Biomacromolecules Asunto de la revista: BIOLOGIA MOLECULAR Año: 2023 Tipo del documento: Article País de afiliación: Finlandia Pais de publicación: Estados Unidos