Your browser doesn't support javascript.
loading
Low-Cost Sensor for Lycopene Content Measurement in Tomato Based on Raspberry Pi 4.
Villaseñor-Aguilar, Marcos-Jesús; Padilla-Medina, José-Alfredo; Prado-Olivarez, Juan; Botello-Álvarez, José-Erinque; Bravo-Sánchez, Micael-Gerardo; Barranco-Gutiérrez, Alejandro-Israel.
Afiliación
  • Villaseñor-Aguilar MJ; Departamento de Ingeniería de Robótica y de Datos, Universidad Politécnica de Guanajuato, Cortazar 38496, Mexico.
  • Padilla-Medina JA; Tecnológico Nacional de México en Celaya, Celaya 38010, Mexico.
  • Prado-Olivarez J; Tecnológico Nacional de México en Celaya, Celaya 38010, Mexico.
  • Botello-Álvarez JE; Tecnológico Nacional de México en Celaya, Celaya 38010, Mexico.
  • Bravo-Sánchez MG; Tecnológico Nacional de México en Celaya, Celaya 38010, Mexico.
  • Barranco-Gutiérrez AI; Tecnológico Nacional de México en Celaya, Celaya 38010, Mexico.
Plants (Basel) ; 12(14)2023 Jul 18.
Article en En | MEDLINE | ID: mdl-37514297
Measuring lycopene in tomatoes is fundamental to the agrifood industry because of its health benefits. It is one of the leading quality criteria for consuming this fruit. Traditionally, the amount determination of this carotenoid is performed using the high-performance liquid chromatography (HPLC) technique. This is a very reliable and accurate method, but it has several disadvantages, such as long analysis time, high cost, and destruction of the sample. In this sense, this work proposes a low-cost sensor that correlates the lycopene content in tomato with the color present in its epicarp. A Raspberry Pi 4 programmed with Python language was used to develop the lycopene prediction model. Various regression models were evaluated using neural networks, fuzzy logic, and linear regression. The best model was the fuzzy nonlinear regression as the RGB input, with a correlation of R2 = 0.99 and a mean error of 1.9 × 10-5. This work was able to demonstrate that it is possible to determine the lycopene content using a digital camera and a low-cost integrated system in a non-invasive way.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Health_economic_evaluation / Prognostic_studies Idioma: En Revista: Plants (Basel) Año: 2023 Tipo del documento: Article País de afiliación: México Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Health_economic_evaluation / Prognostic_studies Idioma: En Revista: Plants (Basel) Año: 2023 Tipo del documento: Article País de afiliación: México Pais de publicación: Suiza