Your browser doesn't support javascript.
loading
Radiation Induces Bone Microenvironment Disruption by Activating the STING-TBK1 Pathway.
Wang, Yuyang; Ren, Li; Xu, Linshan; Wang, Jianping; Zhai, Jianglong; Zhu, Guoying.
Afiliación
  • Wang Y; Institute of Radiation Medicine, Fudan University, 2094 Xietu Road, Shanghai 200032, China.
  • Ren L; Shanghai Municipal Center for Disease Control & Prevention, Shanghai 200051, China.
  • Xu L; Institute of Radiation Medicine, Fudan University, 2094 Xietu Road, Shanghai 200032, China.
  • Wang J; Institute of Radiation Medicine, Fudan University, 2094 Xietu Road, Shanghai 200032, China.
  • Zhai J; Institute of Radiation Medicine, Fudan University, 2094 Xietu Road, Shanghai 200032, China.
  • Zhu G; Institute of Radiation Medicine, Fudan University, 2094 Xietu Road, Shanghai 200032, China.
Medicina (Kaunas) ; 59(7)2023 Jul 16.
Article en En | MEDLINE | ID: mdl-37512126
Background and Objectives: Damage to normal bone tissue following therapeutic irradiation (IR) represents a significant concern, as IR-induced bone microenvironment disruption can cause bone loss and create a more favorable environment for tumor metastases. The aim of the present study was to explore the cellular regulatory mechanism of IR-induced bone microenvironment disruption to effectively prevent radiotherapy-associated adverse effects in the future. Materials and Methods: In this study, a mouse model of local IR was established via local irradiation of the left hind limb of BALB/c mice with 12 Gy X-rays, and an in vitro osteocyte (OCY) model was established by exposing osteocyte-like MLO-Y4 cells to 2, 4, and 8 Gy irradiation to analyze multicellular biological injuries and cellular senescence. Small interfering RNA (siRNA) transfection at the cellular level and a selective antagonist intervention C-176 at the animal level were used to explore the potential role of the stimulator of interferon genes (STING) on IR-induced bone microenvironment disruption. Results: The results showed that 12 Gy local IR induces multicellular dysfunction, manifested as ascension of OCYs exfoliation, activation of osteoclastogenesis, degeneration of osteogenesis and fate conversion of adipogenesis, as well as cellular senescence and altered senescence-associated secretory phenotype (SASP) secretion. Furthermore, the expression of STING was significantly elevated, both in the primary OCYs harvested from locally irradiated mice and in vitro irradiated MLO-Y4 cells, accompanied by the markedly upregulated levels of phosphorylated TANK-binding kinase 1 (P-TBK1), RANKL and sclerostin (SOST). STING-siRNA transfection in vitro restored IR-induced upregulated protein expression of P-TBK1 and RANKL, as well as the mRNA expression levels of inflammatory cytokines, such as IL-1α, IL-6 and NF-κB, accompanied by the alleviation of excessive osteoclastogenesis. Finally, administration of the STING inhibitor C-176 mitigated IR-induced activation of osteoclastogenesis and restraint of osteogenesis, ameliorating the IR-induced biological damage of OCYs, consistent with the inhibition of P-TBK1, RANKL and SOST. Conclusions: The STING-P-TBK1 signaling pathway plays a crucial role in the regulation of the secretion of inflammatory cytokines and osteoclastogenesis potential in IR-induced bone microenvironment disruption. The selective STING antagonist can be used to intervene to block the STING pathway and, thereby, repair IR-induced multicellular biological damage and mitigate the imbalance between osteoclastogenesis and osteoblastgenesis.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Huesos / Transducción de Señal Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Medicina (Kaunas) Asunto de la revista: MEDICINA Año: 2023 Tipo del documento: Article País de afiliación: China Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Huesos / Transducción de Señal Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Medicina (Kaunas) Asunto de la revista: MEDICINA Año: 2023 Tipo del documento: Article País de afiliación: China Pais de publicación: Suiza