Your browser doesn't support javascript.
loading
Deammonification Potential of Pig Slurries and Vapor Condensates from Sewage Sludge Drying-Substrate Quality and Inhibition.
Reiter, Johannes; Beier, Maike.
Afiliación
  • Reiter J; Institute of Sanitary Engineering and Waste Management (ISAH), Faculty of Civil Engineering and Geodetic Science, Leibniz University Hannover, Welfengarten 1, 30167 Hanover, Germany.
  • Beier M; Institute of Sanitary Engineering and Waste Management (ISAH), Faculty of Civil Engineering and Geodetic Science, Leibniz University Hannover, Welfengarten 1, 30167 Hanover, Germany.
Bioengineering (Basel) ; 10(7)2023 Jul 11.
Article en En | MEDLINE | ID: mdl-37508853
Deammonification is a well-established process for sludge liquor treatment and promising for wastewaters with high nitrogen loads because of its low energy demand compared to nitrification/denitrification. Two wastewaters with high NH4-N concentrations and a rising significance in Germany-pig slurry (12 samples) and condensates from sewage sludge drying (6 samples)-were studied for their deammonification potential. Furthermore, a comprehensive quality assessment is presented. Both wastewaters show a wide range in terms of CODt, CODs, TN and NH4-N, whereby condensates show a greater variability with no direct relation to dryer type or temperature. In the slurries, CODt shows a relative standard deviation of 106% (mean 21.1 g/L) and NH4-N of 33% (mean 2.29 g/L), while in condensates it reaches 148% for CODt (mean 2.0 g/L) and 122% for NH4-N (mean 0.7 g/L). No inhibition of ammonium-oxidizing-bacteria was detected in the slurries, while two out of five condensates showed an inhibition of >40%, one of >10% and two showed no inhibition at all. Since the inhibition could be avoided by mixing, deammonification can be recommended for condensate treatment. For slurry treatment, the importance of employing some form of solid-liquid-separation as a pretreatment was noted due to the associated COD.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Bioengineering (Basel) Año: 2023 Tipo del documento: Article País de afiliación: Alemania Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Bioengineering (Basel) Año: 2023 Tipo del documento: Article País de afiliación: Alemania Pais de publicación: Suiza