Your browser doesn't support javascript.
loading
Structural changes of thermally treated starch during digestion and the impact on postprandial glucose homeostasis.
Lu, Xiaoxue; Ma, Rongrong; Zhan, Jinling; Tian, Yaoqi.
Afiliación
  • Lu X; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
  • Ma R; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
  • Zhan J; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China.
  • Tian Y; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China. Electronic address: yqtian@jiangnan.edu.cn.
Carbohydr Polym ; 318: 121105, 2023 Oct 15.
Article en En | MEDLINE | ID: mdl-37479434
Intake of foods upon thermal treatment is typically associated with an elevated postprandial glycemic response, which is one of the risk factors for type 2 diabetes development and progression. In this study, rice starch was thermally treated using aqueous phase (boil), air phase (bake), and lipid phase (fry). Peak blood glucose levels in C57 mice increased by 16.94 %, 12.60 %, and 8.1 % after ingestion of thermally treated starch (20.23, 19.48, and 18.70 mmol/L), compared with raw starch (17.30 mmol/L). The insulin response to the intake of thermally treated starch increased (4.73 %-6.83 % higher than the control), whereas the concentration of GLP-1, a hormone used to promote insulin secretion, decreased (1.54 %-8.56 % lower than the control). Furthermore, thermally treated starch accelerated food absorption by enhancing gastrointestinal digestion, exacerbating postprandial glucose fluctuation at the next meal. Structural characterization showed thermal treatment reduced starch branching density and degree of structure order, which were not conducive to preventing the attack of enzymes. During digestion, they were highly hydrolyzed into low-molecular-weight fragments, and the proportion of ultrashort chains substantially increased. These findings provide a better understanding of the fine structure of starch that promotes hypoglycemia and initially explain how diets high in thermally treated starch impair glucose balance.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Diabetes Mellitus Tipo 2 Tipo de estudio: Risk_factors_studies Límite: Animals Idioma: En Revista: Carbohydr Polym Año: 2023 Tipo del documento: Article País de afiliación: China Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Diabetes Mellitus Tipo 2 Tipo de estudio: Risk_factors_studies Límite: Animals Idioma: En Revista: Carbohydr Polym Año: 2023 Tipo del documento: Article País de afiliación: China Pais de publicación: Reino Unido