Two different jumping mechanisms of water striders are determined by body size.
Proc Natl Acad Sci U S A
; 120(30): e2219972120, 2023 07 25.
Article
en En
| MEDLINE
| ID: mdl-37463206
Current theory for surface tension-dominant jumps on water, created for small- and medium-sized water strider species and used in bioinspired engineering, predicts that jumping individuals are able to match their downward leg movement speed to their size and morphology such that they maximize the takeoff speed and minimize the takeoff delay without breaking the water surface. Here, we use empirical observations and theoretical modeling to show that large species (heavier than ~80 mg) could theoretically perform the surface-dominated jumps according to the existing model, but they do not conform to its predictions, and switch to using surface-breaking jumps in order to achieve jumping performance sufficient for evading attacks from underwater predators. This illustrates how natural selection for avoiding predators may break the theoretical scaling relationship between prey size and its jumping performance within one physical mechanism, leading to an evolutionary shift to another mechanism that provides protection from attacking predators. Hence, the results are consistent with a general idea: Natural selection for the maintenance of adaptive function of a specific behavior performed within environmental physical constraints leads to size-specific shift to behaviors that use a new physical mechanism that secure the adaptive function.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Agua
/
Movimiento
Tipo de estudio:
Prognostic_studies
Límite:
Humans
Idioma:
En
Revista:
Proc Natl Acad Sci U S A
Año:
2023
Tipo del documento:
Article
Pais de publicación:
Estados Unidos