Your browser doesn't support javascript.
loading
Identifying oscillatory brain networks with hidden Gaussian graphical spectral models of MEEG.
Paz-Linares, Deirel; Gonzalez-Moreira, Eduardo; Areces-Gonzalez, Ariosky; Wang, Ying; Li, Min; Martinez-Montes, Eduardo; Bosch-Bayard, Jorge; Bringas-Vega, Maria L; Valdes-Sosa, Mitchell; Valdes-Sosa, Pedro A.
Afiliación
  • Paz-Linares D; The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.
  • Gonzalez-Moreira E; Department of Neuroinformatics, Cuban Neuroscience Center, Havana, Cuba.
  • Areces-Gonzalez A; The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.
  • Wang Y; School of Electrical Engineering, Central University "Marta Abreu" of Las Villas, Santa Clara, Cuba.
  • Li M; Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA.
  • Martinez-Montes E; The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.
  • Bosch-Bayard J; School of Technical Sciences, University of Pinar del Río "Hermanos Saiz Montes de Oca", Pinar del Rio, Cuba.
  • Bringas-Vega ML; The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.
  • Valdes-Sosa M; The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.
  • Valdes-Sosa PA; Department of Neuroinformatics, Cuban Neuroscience Center, Havana, Cuba.
Sci Rep ; 13(1): 11466, 2023 07 15.
Article en En | MEDLINE | ID: mdl-37454235
Identifying the functional networks underpinning indirectly observed processes poses an inverse problem for neurosciences or other fields. A solution of such inverse problems estimates as a first step the activity emerging within functional networks from EEG or MEG data. These EEG or MEG estimates are a direct reflection of functional brain network activity with a temporal resolution that no other in vivo neuroimage may provide. A second step estimating functional connectivity from such activity pseudodata unveil the oscillatory brain networks that strongly correlate with all cognition and behavior. Simulations of such MEG or EEG inverse problem also reveal estimation errors of the functional connectivity determined by any of the state-of-the-art inverse solutions. We disclose a significant cause of estimation errors originating from misspecification of the functional network model incorporated into either inverse solution steps. We introduce the Bayesian identification of a Hidden Gaussian Graphical Spectral (HIGGS) model specifying such oscillatory brain networks model. In human EEG alpha rhythm simulations, the estimation errors measured as ROC performance do not surpass 2% in our HIGGS inverse solution and reach 20% in state-of-the-art methods. Macaque simultaneous EEG/ECoG recordings provide experimental confirmation for our results with 1/3 times larger congruence according to Riemannian distances than state-of-the-art methods.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Encéfalo / Mapeo Encefálico Tipo de estudio: Prognostic_studies Límite: Animals / Humans Idioma: En Revista: Sci Rep Año: 2023 Tipo del documento: Article País de afiliación: China Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Encéfalo / Mapeo Encefálico Tipo de estudio: Prognostic_studies Límite: Animals / Humans Idioma: En Revista: Sci Rep Año: 2023 Tipo del documento: Article País de afiliación: China Pais de publicación: Reino Unido