Your browser doesn't support javascript.
loading
Boosting photocatalytic nitrogen reduction reaction by Jahn-Teller effect.
Wang, Li; Ma, Ben; Teng, Yiran; Ruan, Wansheng; Cheng, Gangya; Zhang, Xinyu; Li, Zhihui; Li, Zhian; Han, Chengyue; Ibhadon, Alex O; Teng, Fei.
Afiliación
  • Wang L; Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Joint International Research Laboratory of Climate and Environment Change (ILCEC), Jiangsu Engineering an
  • Ma B; Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Joint International Research Laboratory of Climate and Environment Change (ILCEC), Jiangsu Engineering an
  • Teng Y; Nanjing Software Research Institute of China United Network Communications Co., Ltd, 230 Lushan Road, Nanjing 210004, China.
  • Ruan W; Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Joint International Research Laboratory of Climate and Environment Change (ILCEC), Jiangsu Engineering an
  • Cheng G; Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Joint International Research Laboratory of Climate and Environment Change (ILCEC), Jiangsu Engineering an
  • Zhang X; Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Joint International Research Laboratory of Climate and Environment Change (ILCEC), Jiangsu Engineering an
  • Li Z; Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Joint International Research Laboratory of Climate and Environment Change (ILCEC), Jiangsu Engineering an
  • Li Z; Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Joint International Research Laboratory of Climate and Environment Change (ILCEC), Jiangsu Engineering an
  • Han C; Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Joint International Research Laboratory of Climate and Environment Change (ILCEC), Jiangsu Engineering an
  • Ibhadon AO; Department of Chemical Engineering, University of Hull, Cottingham Road, Hull HU6 7RX, United Kingdom.
  • Teng F; Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Joint International Research Laboratory of Climate and Environment Change (ILCEC), Jiangsu Engineering an
J Colloid Interface Sci ; 650(Pt A): 426-436, 2023 Nov 15.
Article en En | MEDLINE | ID: mdl-37418893
Compared with traditional the Haber-Bosch process, photocatalytic ammonia production has attracted a considerable attention due to its advantages of low energy consumption and sustainability. In this work, we mainly study the photocatalytic nitrogen reduction reaction (NRR) on MoO3·0.55H2O and α-MoO3. Structure analysis shows that compared to α-MoO6, the [MoO6] octahedrons in MoO3·0.55H2O obviously distort (Jahn-Teller distortion), leading to the formation of Lewis acid active sites that favors the adsorption and activation of N2. X-ray photoelectron spectroscopy (XPS) further confirms the formation of more Mo5+ as Lewis acid active sites in MoO3·0.55H2O. Transient photocurrent, photoluminescence and electrochemical impedance spectra (EIS) confirmed that MoO3·0.55H2O has a higher charge separation and transfer efficiency than α-MoO3. Density functional theory (DFT) calculation further confirmed that the N2 adsorption on MoO3·0.55H2O is more favorable thermodynamically than that on α-MoO3. As a result, under visible light irradiation (λ ≥ 400 nm) for 60 min, an ammonia production rate of 88.6 µmol·gcat-1 was achieved on MoO3·0.55H2O, which is about 4.6 times higher than that on α-MoO3. In comparison to other photocatalysts, MoO3·0.55H2O exhibits an excellent photocatalytic NRR activity under visible light irradiation without using sacrificial agent. This work offers a new fundamental understanding to photocatalytic NRR from the viewpoint of crystal fine structure, which benefits designing efficient photocatalysts.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Colloid Interface Sci Año: 2023 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Colloid Interface Sci Año: 2023 Tipo del documento: Article Pais de publicación: Estados Unidos