Your browser doesn't support javascript.
loading
Iron mediated reductive cyclization/oxidation for the generation of chemically diverse scaffolds: An approach in drug discovery.
Karale, Uttam B; Shinde, Akash; Gaikwad, Vikas R; Kalari, Saradhi; Gourishetti, Karthik; Radhakrishnan, Mydhili; Poornachandra, Yedla; Amanchy, Ramars; Chakravarty, Sumana; Andugulapati, Sai Balaji; Rode, Haridas B.
Afiliación
  • Karale UB; Department of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India.
  • Shinde A; Department of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, India.
  • Gaikwad VR; Department of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, India.
  • Kalari S; Department of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India.
  • Gourishetti K; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India; Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500 007, India.
  • Radhakrishnan M; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India; Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500 007, India.
  • Poornachandra Y; Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500 007, India.
  • Amanchy R; Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500 007, India.
  • Chakravarty S; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India; Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500 007, India.
  • Andugulapati SB; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India; Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500 007, India.
  • Rode HB; Department of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India. Electronic address: haridas.rode@iict.res.in.
Bioorg Chem ; 139: 106698, 2023 Oct.
Article en En | MEDLINE | ID: mdl-37418784
Chemically diverse scaffolds represent a main source of biologically important starting points in drug discovery. Herein, we report the development of such diverse scaffolds from nitroarene/ nitro(hetero)arenes using a key synthetic strategy. In a pilot-scale study, the synthesis of 10 diverse scaffolds was achieved. The 1,7-phenanthroline, thiazolo[5,4-f]quinoline, 2,3-dihydro-1H-pyrrolo[2,3-g]quinoline, pyrrolo[3,2-f]quinoline, 1H-[1,4]oxazino[3,2-g]quinolin-2(3H)-one, [1,2,5]oxadiazolo[3,4-h]quinoline, 7H-pyrido[2,3-c]carbazole, 3H-pyrazolo[4,3-f]quinoline, pyrido[3,2-f]quinoxaline were obtained from nitro hetero arenes in ethanol using iron-acetic acid treatment followed by reaction under oxygen atmosphere. This diverse library is compliant with the rule of five for drug-likeness. The mapping of chemical space represented by these scaffolds revealed a significant contribution to the underrepresented chemical diversity. Crucial to the development of this approach was the mapping of biological space covered by these scaffolds which revealed neurotropic and prophylactic anti-inflammatory activities. In vitro, neuro-biological assays revealed that compounds 14a and 15a showed excellent neurotropic potential and neurite growth compared to controls. Further, anti-inflammatory assays (in vitro and in vivo models) exhibited that Compound 16 showed significant anti-inflammatory activity by attenuating the LPS-induced TNF-α and CD68 levels by modulating the NFkB pathway. In addition, treatment with compound 16 significantly ameliorated the LPS-induced sepsis conditions, and pathological abnormalities (in lung and liver tissues) and improved the survival of the rats compared to LPS control. Owing to their chemical diversity along with bioactivities, it is envisaged that new quality pre-clinical candidates will be generated in the above therapeutic areas using identified leads.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Bioorg Chem Año: 2023 Tipo del documento: Article País de afiliación: India Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Bioorg Chem Año: 2023 Tipo del documento: Article País de afiliación: India Pais de publicación: Estados Unidos