Optical and radiation shielding properties of PVC/BiVO4 nanocomposite.
Sci Rep
; 13(1): 10964, 2023 Jul 06.
Article
en En
| MEDLINE
| ID: mdl-37415084
This study investigates the physical and optical properties as well as the radiation shielding capacity of polyvinyl chloride (PVC) loaded with x% of bismuth vanadate (BiVO4) (x = 0, 1, 3, and 6 wt%). As a non-toxic nanofiller, the designed materials are low-cost, flexible, and lightweight plastic to replace traditional lead, which is toxic and dense. XRD patterns and FTIR spectra demonstrated a successful fabrication and complexation of nanocomposite films. In addition, the particle size, morphology, and elemental composition of the BiVO4 nanofiller were demonstrated through the utilization of TEM, SEM, and EDX spectra. The MCNP5 simulation code assessed the gamma-ray shielding effectiveness of four PVC + x% BiVO4 nanocomposites. The obtained mass attenuation coefficient data of the developed nanocomposites were comparable to the theoretical calculation performed with Phy-X/PSD software. Moreover, the initial stage in the computation of various shielding parameters, such as half-value layer, tenth value layer, and mean free path, besides the simulation of linear attenuation coefficient. The transmission factor declines while radiation protection efficiency increases with an increase in the proportion of BiVO4 nanofiller. Further, the current investigation seeks to evaluate the thickness equivalent (Xeq), effective atomic number (Zeff), and effective electron density (Neff) values as a function of the concentration of BiVO4 in a PVC matrix. The results obtained from the parameters indicate that incorporating BiVO4 into PVC can be an effective strategy for developing sustainable and lead-free polymer nanocomposites, with potential uses in radiation shielding applications.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Protección Radiológica
/
Nanocompuestos
Tipo de estudio:
Prognostic_studies
Límite:
Humans
Idioma:
En
Revista:
Sci Rep
Año:
2023
Tipo del documento:
Article
País de afiliación:
Egipto
Pais de publicación:
Reino Unido