Your browser doesn't support javascript.
loading
Large-scale omics dataset of polymer degradation provides robust interpretation for microbial niche and succession on different plastisphere.
Yokoyama, Daiki; Takamura, Ayari; Tsuboi, Yuuri; Kikuchi, Jun.
Afiliación
  • Yokoyama D; RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
  • Takamura A; Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
  • Tsuboi Y; RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
  • Kikuchi J; RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
ISME Commun ; 3(1): 67, 2023 Jul 03.
Article en En | MEDLINE | ID: mdl-37400632
While biodegradable polymers have received increased attention due to the recent marine plastic problem, few studies have compared microbiomes and their degradation processes among biodegradable polymers. In this study, we set up prompt evaluation systems for polymer degradation, allowing us to collect 418 microbiome and 125 metabolome samples to clarify the microbiome and metabolome differences according to degradation progress and polymer material (polycaprolactone [PCL], polybutylene succinate-co-adipate [PBSA], polybutylene succinate [PBS], polybutylene adipate-co-terephthalate [PBAT], and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) [PHBH]). The microbial community compositions were converged to each polymer material, and the largest differences were observed between PHBH and other polymers. Such gaps were probably formed primarily by the presence of specific hydrolase genes (i.e., 3HB depolymerase, lipase, and cutinase) in the microorganisms. Time-series sampling suggested several steps for microbial succession: (1) initial microbes decrease abruptly after incubation starts; (2) microbes, including polymer degraders, increase soon after the start of incubation and show an intermediate peak; (3) microbes, including biofilm constructers, increase their abundance gradually. Metagenome prediction showed functional changes, where free-swimming microbes with flagella adhered stochastically onto the polymer, and certain microbes started to construct a biofilm. Our large-dataset-based results provide robust interpretations for biodegradable polymer degradation.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ISME Commun Año: 2023 Tipo del documento: Article País de afiliación: Japón Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ISME Commun Año: 2023 Tipo del documento: Article País de afiliación: Japón Pais de publicación: Reino Unido