Your browser doesn't support javascript.
loading
Low-frequency repetitive transcranial magnetic stimulation alters the individual functional dynamical landscape.
Fan, Liming; Li, Youjun; Huang, Zi-Gang; Zhang, Wenlong; Wu, Xiaofeng; Liu, Tian; Wang, Jue.
Afiliación
  • Fan L; The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
  • Li Y; National Engineering Research Center of Health Care and Medical Devices, Guangzhou, Guangdong 510500, China.
  • Huang ZG; The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
  • Zhang W; National Engineering Research Center of Health Care and Medical Devices, Guangzhou, Guangdong 510500, China.
  • Wu X; The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
  • Liu T; National Engineering Research Center of Health Care and Medical Devices, Guangzhou, Guangdong 510500, China.
  • Wang J; The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
Cereb Cortex ; 33(16): 9583-9598, 2023 08 08.
Article en En | MEDLINE | ID: mdl-37376783
Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive approach to modulate brain activity and behavior in humans. Still, how individual resting-state brain dynamics after rTMS evolves across different functional configurations is rarely studied. Here, using resting state fMRI data from healthy subjects, we aimed to examine the effects of rTMS to individual large-scale brain dynamics. Using Topological Data Analysis based Mapper approach, we construct the precise dynamic mapping (PDM) for each participant. To reveal the relationship between PDM and canonical functional representation of the resting brain, we annotated the graph using relative activation proportion of a set of large-scale resting-state networks (RSNs) and assigned the single brain volume to corresponding RSN-dominant or a hub state (not any RSN was dominant). Our results show that (i) low-frequency rTMS could induce changed temporal evolution of brain states; (ii) rTMS didn't alter the hub-periphery configurations underlined resting-state brain dynamics; and (iii) the rTMS effects on brain dynamics differ across the left frontal and occipital lobe. In conclusion, low-frequency rTMS significantly alters the individual temporo-spatial dynamics, and our finding further suggested a potential target-dependent alteration of brain dynamics. This work provides a new perspective to comprehend the heterogeneous effect of rTMS.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Encéfalo / Estimulación Magnética Transcraneal Límite: Humans Idioma: En Revista: Cereb Cortex Asunto de la revista: CEREBRO Año: 2023 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Encéfalo / Estimulación Magnética Transcraneal Límite: Humans Idioma: En Revista: Cereb Cortex Asunto de la revista: CEREBRO Año: 2023 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos