Your browser doesn't support javascript.
loading
Quantum Graph Neural Network Models for Materials Search.
Ryu, Ju-Young; Elala, Eyuel; Rhee, June-Koo Kevin.
Afiliación
  • Ryu JY; School of Electrical Engineering & ITRC of Quantum Computing for AI, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
  • Elala E; Qunova Computing, Incorporated, 193 Munji-ro, Yuseong-gu, Daejeon 34051, Republic of Korea.
  • Rhee JK; School of Electrical Engineering & ITRC of Quantum Computing for AI, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
Materials (Basel) ; 16(12)2023 Jun 10.
Article en En | MEDLINE | ID: mdl-37374486
Inspired by classical graph neural networks, we discuss a novel quantum graph neural network (QGNN) model to predict the chemical and physical properties of molecules and materials. QGNNs were investigated to predict the energy gap between the highest occupied and lowest unoccupied molecular orbitals of small organic molecules. The models utilize the equivariantly diagonalizable unitary quantum graph circuit (EDU-QGC) framework to allow discrete link features and minimize quantum circuit embedding. The results show QGNNs can achieve lower test loss compared to classical models if a similar number of trainable variables are used, and converge faster in training. This paper also provides a review of classical graph neural network models for materials research and various QGNNs.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Materials (Basel) Año: 2023 Tipo del documento: Article Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Materials (Basel) Año: 2023 Tipo del documento: Article Pais de publicación: Suiza