Your browser doesn't support javascript.
loading
Deep learning enables fast, gentle STED microscopy.
Ebrahimi, Vahid; Stephan, Till; Kim, Jiah; Carravilla, Pablo; Eggeling, Christian; Jakobs, Stefan; Han, Kyu Young.
Afiliación
  • Ebrahimi V; CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, FL, USA.
  • Stephan T; Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
  • Kim J; Department of Neurology, University Medical Center Göttingen, Göttingen, Germany.
  • Carravilla P; Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
  • Eggeling C; Leibniz Institute of Photonic Technology e.V., Jena, Germany, member of the Leibniz Centre for Photonics in Infection Research (LPI), Jena, Germany.
  • Jakobs S; Faculty of Physics and Astronomy, Institute of Applied Optics and Biophysics, Friedrich Schiller University Jena, Jena, Germany.
  • Han KY; Leibniz Institute of Photonic Technology e.V., Jena, Germany, member of the Leibniz Centre for Photonics in Infection Research (LPI), Jena, Germany.
Commun Biol ; 6(1): 674, 2023 06 27.
Article en En | MEDLINE | ID: mdl-37369761
STED microscopy is widely used to image subcellular structures with super-resolution. Here, we report that restoring STED images with deep learning can mitigate photobleaching and photodamage by reducing the pixel dwell time by one or two orders of magnitude. Our method allows for efficient and robust restoration of noisy 2D and 3D STED images with multiple targets and facilitates long-term imaging of mitochondrial dynamics.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Aprendizaje Profundo Idioma: En Revista: Commun Biol Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Aprendizaje Profundo Idioma: En Revista: Commun Biol Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido