Your browser doesn't support javascript.
loading
Invited review: Good practices in genome-wide association studies to identify candidate sequence variants in dairy cattle.
Sahana, G; Cai, Z; Sanchez, M P; Bouwman, A C; Boichard, D.
Afiliación
  • Sahana G; Aarhus University, Center for Quantitative Genetic and Genomics, 8830 Tjele, Denmark. Electronic address: goutam.sahana@qgg.au.dk.
  • Cai Z; Aarhus University, Center for Quantitative Genetic and Genomics, 8830 Tjele, Denmark.
  • Sanchez MP; Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350 Jouy-en-Josas, France.
  • Bouwman AC; Wageningen University & Research, Animal Breeding and Genomics, 6700 AH Wageningen, the Netherlands.
  • Boichard D; Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350 Jouy-en-Josas, France.
J Dairy Sci ; 106(8): 5218-5241, 2023 Aug.
Article en En | MEDLINE | ID: mdl-37349208
Genotype data from dairy cattle selection programs have greatly facilitated GWAS to identify variants related to economic traits. Results can enhance the accuracy of genomic prediction, analyze more complex models that go beyond additive effects, elucidate the genetic architecture of a trait, and finally, decipher the underlying biology of traits. The entire process, comprising data generation, quality control, statistical analyses, interpretation of association results, and linking results to biology should be designed and executed to minimize the generation of false-positive and false-negative associations and misleading links to biological processes. This review aims to provide general guidelines for data analysis that address data quality control, association tests, adjustment for population stratification, and significance evaluation to improve the reliability of conclusions. We also provide guidance on post-GWAS strategy and the interpretation of results. These guidelines are tailored to dairy cattle, which are characterized by long-range linkage disequilibrium, large half-sib families, and routinely collected phenotypes, requiring different approaches than those applied in human GWAS. We discuss common limitations and challenges that have been overlooked in the analysis and interpretation of GWAS to identify candidate sequence variants in dairy cattle.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Sitios de Carácter Cuantitativo / Estudio de Asociación del Genoma Completo Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Animals / Humans Idioma: En Revista: J Dairy Sci Año: 2023 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Sitios de Carácter Cuantitativo / Estudio de Asociación del Genoma Completo Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Animals / Humans Idioma: En Revista: J Dairy Sci Año: 2023 Tipo del documento: Article Pais de publicación: Estados Unidos