Your browser doesn't support javascript.
loading
Performance of anaerobic/oxic/anoxic simultaneous nitrification, denitrification and phosphorus removal system overwhelmingly dominated by Candidatus_Competibacter: Effect of aeration time.
Ma, Jingwei; Ji, Yaning; Fu, Zhidong; Yan, Xiaohui; Xu, Peng; Li, Jinfeng; Liu, Liang; Bi, Peng; Zhu, Liang; Xu, Baokun; He, Qiulai.
Afiliación
  • Ma J; Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha 410082, China.
  • Ji Y; Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha 410082, China.
  • Fu Z; Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha 410082, China.
  • Yan X; Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha 410082, China.
  • Xu P; Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha 410082, China.
  • Li J; Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha 410082, China.
  • Liu L; Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha 410082, China.
  • Bi P; Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha 410082, China.
  • Zhu L; Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha 410082, China.
  • Xu B; Agricultural Water Conservancy Department, Changjiang River Scientific Research Institute, Wuhan 430010, China.
  • He Q; Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha 410082, China. Electronic address: qiulai
Bioresour Technol ; 384: 129312, 2023 Sep.
Article en En | MEDLINE | ID: mdl-37307956
The anaerobic/oxic/anoxic simultaneous nitrification, denitrification and phosphorus removal process (AOA-SNDPR) is a promising technology for enhanced biological wastewater treatment and in situ sludge reduction. Herein, effects of aeration time (90, 75, 60, 45, and 30 min, respectively) on the AOA-SNDPR were evaluated including simultaneous nutrients removal, sludge characteristics, and microbial community evolution, where the role of a denitrifying glycogen accumulating organisms, Candidatus_Competibacter, was re-explored given its overwhelming dominance. Results revealed that nitrogen removal was more vulnerable, and a moderate aeration period of 45-60 min favored nutrients removal most. Low observed sludge yields (Yobs) were obtained with decreased aeration (as low as 0.02-0.08 g MLSS/g COD), while MLVSS/MLSS got increased. The dominance of Candidatus_Competibacter was identified as the key to endogenous denitrifying and in situ sludge reduction. This study would aid the low carbon- and energy-efficient aeration strategy for AOA-SNDPR systems treating low-strength municipal wastewater.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Gammaproteobacteria / Nitrificación Tipo de estudio: Prognostic_studies Idioma: En Revista: Bioresour Technol Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2023 Tipo del documento: Article País de afiliación: China Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Gammaproteobacteria / Nitrificación Tipo de estudio: Prognostic_studies Idioma: En Revista: Bioresour Technol Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2023 Tipo del documento: Article País de afiliación: China Pais de publicación: Reino Unido