Your browser doesn't support javascript.
loading
Implementation of Nanopore sequencing as a pragmatic workflow for copy number variant confirmation in the clinic.
Greer, Stephanie U; Botello, Jacquelin; Hongo, Donna; Levy, Brynn; Shah, Premal; Rabinowitz, Matthew; Miller, Danny E; Im, Kate; Kumar, Akash.
Afiliación
  • Greer SU; MyOme Inc., 535 Middlefield Rd Suite 170, Menlo Park, CA, USA.
  • Botello J; MyOme Inc., 535 Middlefield Rd Suite 170, Menlo Park, CA, USA.
  • Hongo D; MyOme Inc., 535 Middlefield Rd Suite 170, Menlo Park, CA, USA.
  • Levy B; MyOme Inc., 535 Middlefield Rd Suite 170, Menlo Park, CA, USA.
  • Shah P; Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA.
  • Rabinowitz M; MyOme Inc., 535 Middlefield Rd Suite 170, Menlo Park, CA, USA.
  • Miller DE; MyOme Inc., 535 Middlefield Rd Suite 170, Menlo Park, CA, USA.
  • Im K; Natera Inc., San Carlos, CA, USA.
  • Kumar A; Department of Pediatrics, Department of Laboratory Medicine and Pathology, University of Washington, WA, Seattle, USA.
J Transl Med ; 21(1): 378, 2023 06 10.
Article en En | MEDLINE | ID: mdl-37301971
BACKGROUND: Diagnosis of rare genetic diseases can be a long, expensive and complex process, involving an array of tests in the hope of obtaining an actionable result. Long-read sequencing platforms offer the opportunity to make definitive molecular diagnoses using a single assay capable of detecting variants, characterizing methylation patterns, resolving complex rearrangements, and assigning findings to long-range haplotypes. Here, we demonstrate the clinical utility of Nanopore long-read sequencing by validating a confirmatory test for copy number variants (CNVs) in neurodevelopmental disorders and illustrate the broader applications of this platform to assess genomic features with significant clinical implications. METHODS: We used adaptive sampling on the Oxford Nanopore platform to sequence 25 genomic DNA samples and 5 blood samples collected from patients with known or false-positive copy number changes originally detected using short-read sequencing. Across the 30 samples (a total of 50 with replicates), we assayed 35 known unique CNVs (a total of 55 with replicates) and one false-positive CNV, ranging in size from 40 kb to 155 Mb, and assessed the presence or absence of suspected CNVs using normalized read depth. RESULTS: Across 50 samples (including replicates) sequenced on individual MinION flow cells, we achieved an average on-target mean depth of 9.5X and an average on-target read length of 4805 bp. Using a custom read depth-based analysis, we successfully confirmed the presence of all 55 known CNVs (including replicates) and the absence of one false-positive CNV. Using the same CNV-targeted data, we compared genotypes of single nucleotide variant loci to verify that no sample mix-ups occurred between assays. For one case, we also used methylation detection and phasing to investigate the parental origin of a 15q11.2-q13 duplication with implications for clinical prognosis. CONCLUSIONS: We present an assay that efficiently targets genomic regions to confirm clinically relevant CNVs with a concordance rate of 100%. Furthermore, we demonstrate how integration of genotype, methylation, and phasing data from the Nanopore sequencing platform can potentially simplify and shorten the diagnostic odyssey.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Secuenciación de Nanoporos Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: J Transl Med Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Secuenciación de Nanoporos Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: J Transl Med Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido