Gene coexpression network during ontogeny in the yellow fever mosquito, Aedes aegypti.
BMC Genomics
; 24(1): 301, 2023 Jun 03.
Article
en En
| MEDLINE
| ID: mdl-37270481
BACKGROUND: The behaviors and ontogeny of Aedes aegypti are closely related to the spread of diseases caused by dengue (DENV), chikungunya (CHIKV), Zika (ZIKV), and yellow fever (YFV) viruses. During the life cycle, Ae. aegypti undergoes drastic morphological, metabolic, and functional changes triggered by gene regulation and other molecular mechanisms. Some essential regulatory factors that regulate insect ontogeny have been revealed in other species, but their roles are still poorly investigated in the mosquito. RESULTS: Our study identified 6 gene modules and their intramodular hub genes that were highly associated with the ontogeny of Ae. aegypti in the constructed network. Those modules were found to be enriched in functional roles related to cuticle development, ATP generation, digestion, immunity, pupation control, lectins, and spermatogenesis. Additionally, digestion-related pathways were activated in the larvae and adult females but suppressed in the pupae. The integrated proteinâprotein network also identified cilium-related genes. In addition, we verified that the 6 intramodular hub genes encoding proteins such as EcKinase regulating larval molt were only expressed in the larval stage. Quantitative RTâPCR of the intramodular hub genes gave similar results as the RNA-Seq expression profile, and most hub genes were ontogeny-specifically expressed. CONCLUSIONS: The constructed gene coexpression network provides a useful resource for network-based data mining to identify candidate genes for functional studies. Ultimately, these findings will be key in identifying potential molecular targets for disease control.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Fiebre Amarilla
/
Aedes
/
Dengue
/
Virus Zika
/
Infección por el Virus Zika
Tipo de estudio:
Prognostic_studies
Límite:
Animals
Idioma:
En
Revista:
BMC Genomics
Asunto de la revista:
GENETICA
Año:
2023
Tipo del documento:
Article
País de afiliación:
China
Pais de publicación:
Reino Unido