Preparation of Symmetrical Capacitors from Lignin-Derived Phenol and PANI Composites with Good Electrical Conductivity.
Int J Mol Sci
; 24(10)2023 May 12.
Article
en En
| MEDLINE
| ID: mdl-37240006
As a natural polymer, lignin is only less abundant in nature than cellulose. It has the form of an aromatic macromolecule, with benzene propane monomers connected by molecular bonds such as C-C and C-O-C. One method to accomplish high-value lignin conversion is degradation. The use of deep eutectic solvents (DESs) to degrade lignin is a simple, efficient and environmentally friendly degradation method. After degradation, the lignin is broken due to ß-O-4 to produce phenolic aromatic monomers. In this work, lignin degradation products were evaluated as additives for the preparation of polyaniline conductive polymers, which not only avoids solvent waste but also achieves a high-value use of lignin. The morphological and structural characteristics of the LDP/PANI composites were investigated using 1H NMR, Fourier-transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, thermogravimetric analysis and elemental analysis. The LDP/PANI nanocomposite provides a specific capacitance of 416.6 F/g at 1 A/g and can be used as a lignin-based supercapacitor with good conductivity. Assembled as a symmetrical supercapacitor device, it provides an energy density of 57.86 Wh/kg, an excellent power density of 952.43 W/kg and, better still, a sustained cycling stability. Thus, the combination of polyaniline and lignin degradate, which is environmentally friendly, amplifies the capacitive function on the basis of polyaniline.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Fenol
/
Lignina
Idioma:
En
Revista:
Int J Mol Sci
Año:
2023
Tipo del documento:
Article
País de afiliación:
China
Pais de publicación:
Suiza