Your browser doesn't support javascript.
loading
A generalized interrupted time series model for assessing complex health care interventions.
Cruz, Maricela; Ombao, Hernando; Gillen, Daniel L.
Afiliación
  • Cruz M; Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA.
  • Ombao H; Biostatistics Group, King Abdullah University of Science and Technology Thuwal, Saudi Arabia.
  • Gillen DL; Department of Statistics, University of California Irvine, Irvine, CA, USA.
Stat Biosci ; 14(3): 582-610, 2022 Dec.
Article en En | MEDLINE | ID: mdl-37234509
Assessing the impact of complex interventions on measurable health outcomes is a growing concern in health care and health policy. Interrupted time series (ITS) designs borrow from traditional case-crossover designs and function as quasi-experimental methodology able to retrospectively analyze the impact of an intervention. Statistical models used to analyze ITS designs primarily focus on continuous-valued outcomes. We propose the "Generalized Robust ITS" (GRITS) model appropriate for outcomes whose underlying distribution belongs to the exponential family of distributions, thereby expanding the available methodology to adequately model binary and count responses. GRITS formally implements a test for the existence of a change point in discrete ITS. The methodology proposed is able to test for the existence of and estimate the change point, borrow information across units in multi-unit settings, and test for differences in the mean function and correlation pre- and post-intervention. The methodology is illustrated by analyzing patient falls from a hospital that implemented and evaluated a new care delivery model in multiple units.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Risk_factors_studies Idioma: En Revista: Stat Biosci Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Risk_factors_studies Idioma: En Revista: Stat Biosci Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos