Cation-defect-induced self-reduction towards efficient mechanoluminescence in Mn2+-activated perovskites.
Mater Horiz
; 10(9): 3476-3487, 2023 Aug 29.
Article
en En
| MEDLINE
| ID: mdl-37233737
Mechanoluminescent (ML) materials have shown promising prospects for various applications, e.g. in stress sensing, information anti-counterfeiting and bio stress imaging fields. However, the development of trap-controlled ML materials is still limited, because the trap formation mechanism is not always clear. Here, inspired by a defect-induced Mn4+ â Mn2+ self-reduction process in suitable host crystal structures, a cation vacancy model is creatively proposed to determine the potential trap-controlled ML mechanism. Combined with the theoretical prediction and experimental results, both the self-reduction process and ML mechanism are clarified in detail, where the contribution of and defects dominates the ML luminescent process. Electrons/holes are mainly captured by the anionic/cationic defects, followed by the combination of electrons and holes to transfer energy to the Mn2+ 3d states under mechanical stimuli. Based on the multi-mode luminescent features excited by X-ray, 980 nm laser and 254 nm UV lamp, together with the excellent persistent luminescence and ML, a potential application in advanced anti-counterfeiting is demonstrated. These results will deepen the understanding of the defect-controlled ML mechanism, and inspire more defect-engineering strategies to develop more high-performance ML phosphors for practical application.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Tipo de estudio:
Prognostic_studies
Idioma:
En
Revista:
Mater Horiz
Año:
2023
Tipo del documento:
Article
Pais de publicación:
Reino Unido