In-Situ-Polymerized 1,3-Dioxolane Solid-State Electrolyte with Space-Confined Plasticizers for High-Voltage and Robust Li/LiCoO2 Batteries.
ACS Appl Mater Interfaces
; 15(22): 26834-26842, 2023 Jun 07.
Article
en En
| MEDLINE
| ID: mdl-37222274
In-situ-polymerized solid-state electrolytes can significantly improve the interfacial compatibility of Li metal batteries. Typically, in-situ-polymerized 1,3-dioxolane electrolyte (PDOL) exhibits good compatibility with Li metal. However, it still suffers from the narrow electrochemical window (4.1 V), limiting the application of high-voltage cathodes. Herein, a novel modified PDOL (PDOL-F/S) electrolyte with an expanded electrochemical window of 4.43 V and a considerable ionic conductivity of 1.95 × 10-4 S cm-1 is developed by introducing high-voltage stable plasticizers (fluoroethylene carbonate and succinonitrile) to its polymer network. The space-confined plasticizers are beneficial to construct a high-quality cathode-electrolyte interphase, hindering the decomposition of lithium salts and polymers in electrolytes at high voltage. The as-assembled Li|PDOL-F/S|LiCoO2 battery delivers superior cycling stability (capacity retention of 80% after 400 cycles) at 4.3 V, superior to that of pristine PDOL (3% after 120 cycles). This work provides new insights into the design and application of high-voltage solid-state lithium metal batteries by in situ polymerization.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
ACS Appl Mater Interfaces
Asunto de la revista:
BIOTECNOLOGIA
/
ENGENHARIA BIOMEDICA
Año:
2023
Tipo del documento:
Article
Pais de publicación:
Estados Unidos