[A panel study on the effect of atmospheric PM2.5 exposure on the gut microbiome in healthy elderly people aged 60-69 years old].
Zhonghua Yu Fang Yi Xue Za Zhi
; 57(7): 1018-1025, 2023 Jul 06.
Article
en Zh
| MEDLINE
| ID: mdl-37198716
Objective: To analyze the short-term effect of individual atmospheric PM2.5 exposure on the diversity, enterotype, and community structure of gut microbiome in healthy elderly people in Jinan, Shandong province. Methods: The present panel study recruited 76 healthy elderly people aged 60-69 years old in Dianliu Street, Lixia District, Jinan, Shandong Province, and followed them up five times from September 2018 to January 2019. The relevant information was collected by questionnaire, physical examination, precise monitoring of individual PM2.5 exposure, fecal sample collection and gut microbiome 16S rDNA sequencing. The Dirichlet multinomial mixtures (DMM) model was used to analyze the enterotype. Linear mixed effect model and generalized linear mixed effect model were used to analyze the effect of PM2.5 exposure on gut microbiome α diversity indices (Shannon, Simpson, Chao1, and ACE indices), enterotype and abundance of core species. Results: Each of the 76 subjects participated in at least two follow-up visits, resulting in a total of 352 person-visits. The age of 76 subjects was (65.0±2.8) years old with BMI (25.0±2.4) kg/m2. There were 38 males accounting for 50% of the subjects. People with an educational level of primary school or below accounted for 10.5% of the 76 subjects, and those with secondary school and junior college or above accounting for 71.1% and 18.4%. The individual PM2.5 exposure concentration of 76 subjects during the study period was (58.7±53.7) µg/m3. DMM model showed that the subjects could be divided into four enterotypes, which were mainly driven by Bacteroides, Faecalibacterium, Lachnospiraceae, Prevotellaceae, and Ruminococcaceae. Linear mixed effects model showed that different lag periods of PM2.5 exposure were significantly associated with a lower gut α diversity index (FDR<0.05 after correction). Further analysis showed that PM2.5 exposure was significantly associated with changes in the abundances of Firmicutes (Megamonas, Blautia, Streptococcus, etc.) and Bacteroidetes (Alistipes) (FDR<0.05 after correction). Conclusion: Short-term PM2.5 exposure is significantly associated with a decrease in gut microbiome diversity and changes in the abundance of several species of Firmicutes and Bacteroidetes in the elderly. It is necessary to further explore the underlying mechanisms between PM2.5 exposure and the gut microbiome, so as to provide a scientific basis for promoting the intestinal health of the elderly.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Microbioma Gastrointestinal
Límite:
Aged
/
Female
/
Humans
/
Male
/
Middle aged
Idioma:
Zh
Revista:
Zhonghua Yu Fang Yi Xue Za Zhi
Año:
2023
Tipo del documento:
Article
País de afiliación:
China
Pais de publicación:
China