Your browser doesn't support javascript.
loading
Integration of G-Quadruplex and Pyrene as a Simple and Efficient Ratiometric Fluorescent Platform That Programmed by Contrary Logic Pair for Highly Sensitive and Selective Coralyne (COR) Detection.
Han, Jiawen; Ding, Yaru; Lv, Xujuan; Zhang, Yuwei; Fan, Daoqing.
Afiliación
  • Han J; Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
  • Ding Y; School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
  • Lv X; Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
  • Zhang Y; Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
  • Fan D; Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
Biosensors (Basel) ; 13(4)2023 Apr 19.
Article en En | MEDLINE | ID: mdl-37185564
The effective and accurate detection of the anticancer drug coralyne (COR) is highly significant for drug quality control, medication safety and good health. Although various COR sensors have been reported in recent years, previous ones can only exhibit single-signal output (turn ON or turn OFF) with poor reliability and anti-interference ability. Therefore, exploring novel platform with dual-signal response for COR detection is urgently needed. Herein, we reported the first ratiometric fluorescent platform for highly sensitive and selective COR detection by integrating G-quadruplex (G4) and Pyrene (Py) as signal probes and harnessing A-COR-A interaction. In the absence of COR, the platform shows a low fluorescence signal of PPIX (F642) and a high one of Py monomer (F383). With the addition of COR, two delicately designed poly-A ssDNAs will hybridize with each other via A-COR-A coordination to form complete G4, yielding the increased fluorescence signal of PPIX and the decreased one of Py due to the formation of Py excimer. Based on the above mechanism, we constructed a simple and efficient sensor that could realize the ratiometric fluorescent detection of COR with high sensitivity and selectivity. A linear relationship between F642/F383 and COR's concentration is obtained in the range from 1 nM to 8 µM. And the limit of detection of COR could reach to as low as 0.63 nM without any amplification, which is much lower than that of most COR sensors reported so far. Notably, the logical analysis of COR can be carried out under the control of a "YES-NOT" contrary logic pair, enabling the smart dual-channel response with an adequate S/N ratio and improved reliability and anti-interference ability. Moreover, this system also presents satisfactory performance in fetal bovine serum (FBS) samples.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Pirenos / Colorantes Fluorescentes Tipo de estudio: Diagnostic_studies Idioma: En Revista: Biosensors (Basel) Año: 2023 Tipo del documento: Article País de afiliación: China Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Pirenos / Colorantes Fluorescentes Tipo de estudio: Diagnostic_studies Idioma: En Revista: Biosensors (Basel) Año: 2023 Tipo del documento: Article País de afiliación: China Pais de publicación: Suiza